Tolstoy Maya

No Thumbnail Available
Last Name
Tolstoy
First Name
Maya
ORCID

Search Results

Now showing 1 - 4 of 4
  • Article
    The Cascadia Initiative : a sea change In seismological studies of subduction zones
    (The Oceanography Society, 2014-06) Toomey, Douglas R. ; Allen, Richard M. ; Barclay, Andrew H. ; Bell, Samuel W. ; Bromirski, Peter D. ; Carlson, Richard L. ; Chen, Xiaowei ; Collins, John A. ; Dziak, Robert P. ; Evers, Brent ; Forsyth, Donald W. ; Gerstoft, Peter ; Hooft, Emilie E. E. ; Livelybrooks, Dean ; Lodewyk, Jessica A. ; Luther, Douglas S. ; McGuire, Jeffrey J. ; Schwartz, Susan Y. ; Tolstoy, Maya ; Trehu, Anne M. ; Weirathmueller, Michelle ; Wilcock, William S. D.
    Increasing public awareness that the Cascadia subduction zone in the Pacific Northwest is capable of great earthquakes (magnitude 9 and greater) motivates the Cascadia Initiative, an ambitious onshore/offshore seismic and geodetic experiment that takes advantage of an amphibious array to study questions ranging from megathrust earthquakes, to volcanic arc structure, to the formation, deformation and hydration of the Juan De Fuca and Gorda Plates. Here, we provide an overview of the Cascadia Initiative, including its primary science objectives, its experimental design and implementation, and a preview of how the resulting data are being used by a diverse and growing scientific community. The Cascadia Initiative also exemplifies how new technology and community-based experiments are opening up frontiers for marine science. The new technology—shielded ocean bottom seismometers—is allowing more routine investigation of the source zone of megathrust earthquakes, which almost exclusively lies offshore and in shallow water. The Cascadia Initiative offers opportunities and accompanying challenges to a rapidly expanding community of those who use ocean bottom seismic data.
  • Article
    Introduction to the special issue : From RIDGE to Ridge 2000
    (The Oceanography Society, 2012-03) Fornari, Daniel J. ; Beaulieu, Stace E. ; Holden, James F. ; Mullineaux, Lauren S. ; Tolstoy, Maya
    Articles in this special issue of Oceanography represent a compendium of research that spans the disciplinary and thematic breadth of the National Science Foundation's Ridge 2000 Program, as well as its geographic focal points. The mid-ocean ridge (MOR) crest is where much of Earth's volcanism is focused and where most submarine volcanic activity occurs. If we could look down from space at our planet with the ocean drained, the MOR's topography and shape, along with its intervening fracture zones, would resemble the seams on a baseball, with the ocean basins dominating our planetary panorama. The volcanic seafloor is hidden beneath the green-blue waters of the world's ocean, yet therein lie fundamental clues to how our planet works and has evolved over billions of years, something that was not clearly understood 65 years ago—witness the following quote from H.H. Hess (1962) in his essay on "geopoetry" and commentary on J.H.F. Umbgrove's (1947) comprehensive summary of Earth and ocean history: The birth of the oceans is a matter of conjecture, the subsequent history is obscure, and the present structure is just beginning to be understood. Fascinating speculation on these subjects has been plentiful, but not much of it predating the last decade [the 1950s] holds water.
  • Article
    Interrelationships between vent fluid chemistry, temperature, seismic activity, and biological community structure at a mussel-dominated, deep-sea hydrothermal vent along the East Pacific Rise
    (National Shellfisheries Association, 2008-03) Lutz, Richard A. ; Shank, Timothy M. ; Luther, George W. ; Vetriani, Costantino ; Tolstoy, Maya ; Nuzzio, Donald B. ; Moore, Tommy S. ; Waldhauser, Felix ; Crespo-Medina, Melitza ; Chatziefthimiou, Aspassia D. ; Annis, Eric R. ; Reed, Andrew J.
    In April 1991, submarine volcanic eruptions initiated the formation of numerous hydrothermal vents between 9°45′ and 9°52′N along the crest of the East Pacific Rise (EPR). Dramatic changes in biological community structure and vent fluid chemistry have been documented throughout this region since the eruptive event. By April 2004, mussels (Bathymodiolus thermophilus) dominated the faunal assemblages at several of the vent sites formed during of after the 1991 eruptions, whereas other habitats within the region were dominated by the vestimentiferan Riftia pachyptila. In the present paper, we build upon the extensive data sets obtained at these sites over the past decade and describe a manipulative experiment (conducted at 9°49.94′N; 104°14.43′W on the EPR) designed to assess interrelationships between vent fluid chemistry, temperature, biological community structure, and seismic activity. To this end, in situ voltammetric systems and thermal probes were used to measure H2S/HS− and temperature over time in a denuded region of an extensive mussel bed in which an exclusion cage was placed to inhibit the subsequent migration of mussels into the denuded area. Fluid samples were taken from the same locations to characterize the associated microbial constituents. Basalt blocks, which were placed in the cage in April 2004 and subsequently recovered in April 2005, were colonized by more than 25 different species of invertebrates, including numerous vestimentiferans and remarkably few mussels. Recorded temporal changes in vent fluid chemistry and temperature regimes, when coupled with microbiological characterization of the vent fluids and seismic activity data obtained from ocean bottom seismometers, shed considerable light on factors controlling biological community structure in these hydrothermal ecosystems.
  • Article
    Evidence of a recent magma dike intrusion at the slow spreading Lucky Strike segment, Mid-Atlantic Ridge
    (American Geophysical Union, 2004-12-04) Dziak, Robert P. ; Smith, Deborah K. ; Bohnenstiehl, DelWayne R. ; Fox, Christopher G. ; Desbruyeres, Daniel ; Matsumoto, Haru ; Tolstoy, Maya ; Fornari, Daniel J.
    Mid-ocean ridge volcanic activity is the fundamental process for creation of ocean crust, yet the dynamics of magma emplacement along the slow spreading Mid-Atlantic Ridge (MAR) are largely unknown. We present acoustical, seismological, and biological evidence of a magmatic dike intrusion at the Lucky Strike segment, the first detected from the deeper sections (>1500 m) of the MAR. The dike caused the largest teleseismic earthquake swarm recorded at Lucky Strike in >20 years of seismic monitoring, and one of the largest ever recorded on the northern MAR. Hydrophone records indicate that the rate of earthquake activity decays in a nontectonic manner and that the onset of the swarm was accompanied by 30 min of broadband (>3 Hz) intrusion tremor, suggesting a volcanic origin. Two submersible investigations of high-temperature vents located at the summit of Lucky Strike Seamount 3 months and 1 year after the swarm showed a significant increase in microbial activity and diffuse venting. This magmatic episode may represent one form of volcanism along the MAR, where highly focused pockets of magma are intruded sporadically into the shallow ocean crust beneath long-lived, discrete volcanic structures recharging preexisting seafloor hydrothermal vents and ecosystems.