Brown
Zachary W.
Brown
Zachary W.
No Thumbnail Available
Search Results
Now showing
1 - 2 of 2
-
PreprintThe influence of winter water on phytoplankton blooms in the Chukchi Sea( 2015-06) Lowry, Kate E. ; Pickart, Robert S. ; Mills, Matthew M. ; Brown, Zachary W. ; van Dijken, Gert L. ; Bates, Nicholas R. ; Arrigo, Kevin R.The flow of nutrient-rich winter water (WW) through the Chukchi Sea plays an important and previously uncharacterized role in sustaining summer phytoplankton blooms. Using hydrographic and biogeochemical data collected as part of the ICESCAPE program (June-July 2010-11), we examined phytoplankton bloom dynamics in relation to the distribution and circulation of WW (defined as water with potential temperature ≤ -1.6°C) across the Chukchi shelf. Characterized by high concentrations of nitrate (mean: 12.3 ± 5.13 μmol L-1) that typically limits primary production in this region, WW was correlated with extremely high phytoplankton biomass, with mean chlorophyll a concentrations that were three-fold higher in WW (8.64 ± 9.75 μg L-1) than in adjacent warmer water (2.79 ± 5.58 μg L-1). Maximum chlorophyll a concentrations (~30 μg L-1) were typically positioned at the interface between nutrient-rich WW and shallower, warmer water with more light availability. Comparing satellite-based calculations of open water duration to phytoplankton biomass, nutrient concentrations, and oxygen saturation revealed widespread evidence of under-ice blooms prior to our sampling, with biogeochemical properties indicating that blooms had already terminated in many places where WW was no longer present. Our results suggest that summer phytoplankton blooms are sustained for a longer duration along the pathways of nutrient-rich WW and that biological hotspots in this region (e.g. the mouth of Barrow Canyon) are largely driven by the flow and confluence of these extremely productive pathways of WW that flow across the Chukchi shelf.
-
ArticleNitrogen limitation of the summer phytoplankton and heterotrophic prokaryote communities in the Chukchi Sea(Frontiers Media, 2018-10-15) Mills, Matthew M. ; Brown, Zachary W. ; Laney, Samuel R. ; Ortega-Retuerta, Eva ; Lowry, Kate E. ; van Dijken, Gert L. ; Arrigo, Kevin R.Major changes to Arctic marine ecosystems have resulted in longer growing seasons with increased phytoplankton production over larger areas. In the Chukchi Sea, the high productivity fuels intense benthic denitrification creating a nitrogen (N) deficit that is transported through the Arctic to the Atlantic Ocean, where it likely fuels N fixation. Given the rapid pace of environmental change and the potentially globally significant N deficit, we conducted experiments aimed at understanding phytoplankton and microbial N utilization in the Chukchi Sea. Ship-board experiments tested the effect of nitrate (NO3-) additions on both phytoplankton and heterotrophic prokaryote abundance, community composition, photophysiology, carbon fixation and NO3- uptake rates. Results support the critical role of NO3- in limiting summer phytoplankton communities to small cells with low production rates. NO3- additions increased particulate concentrations, abundance of large diatoms, and rates of carbon fixation and NO3- uptake by cells >1 μm. Increases in the quantum yield and electron turnover rate of photosystem II in +NO3- treatments suggested that phytoplankton in the ambient dissolved N environment were N starved and unable to build new, or repair damaged, reaction centers. While some increases in heterotrophic prokaryote abundance and production were noted with NO3- amendments, phytoplankton competition or grazers likely dampened these responses. Trends toward a warmer more stratified Chukchi Sea will likely enhance summer oligotrophic conditions and further N starve Chukchi Sea phytoplankton communities.