Lovko
Vince
Lovko
Vince
No Thumbnail Available
Search Results
Now showing
1 - 5 of 5
-
PresentationCHANS : Florida red tides and coastal populations as a coupled nature-human system( 2013-10-28) Hoagland, Porter ; Kirkpatrick, Barbara ; Kirkpatrick, Gary ; Hitchcock, Gary ; Kohler, Kate ; Lovko, Vince ; Ullmann, Steven G. ; Reich, Andrew ; Fleming, Lora E.Coupled nature-human (CNH) systems are now the focus of a growing number of inter-disciplinary research programs worldwide. As implied by the term “coupled,” these systems in-volve interactions between humans and nature, often affecting the dynamic characteristics of each component. Both natural and social scientists are engaged in developing a deeper un-derstanding of these dynamics, focusing on the linkages and feedbacks affecting the trajectories of coupled system behavior. Several researchers have begun to identify the generic aspects of nature-human couplings. Many of these aspects have been adapted from the field of ecology, where the dynamic characteristics of ecological systems have been studied for decades. These aspects include system heterogeneity, time lags, reciprocal feedbacks, thresholds, surprises, legacies, and resilience. The presence of such aspects has implications for the stability and persistence of particular ecosystem states, leading potentially to further implications for human heath and welfare. This talk reviews a specific type of natural hazard-human coupling that relates to coastal blooms of toxic marine algae, drawing examples primarily from human interactions with blooms of the toxic dinoflagellate Karenia brevis from the eastern Gulf of Mexico. This talk introduces a set of HAB Symposium “speed” presentations relating to different aspects of an ongoing multi-institutional and inter-disciplinary research project that examines Florida red tides as a type of CNH system. We present examples of the generic aspects of CNH systems in the context of Florida red tides, and we discuss also some of the challenges involved in compiling relevant data to support our analytical efforts.
-
ArticleLessening the hazards of Florida red tides: a common sense approach(Frontiers Media, 2020-07-09) Hoagland, Porter ; Kirkpatrick, Barbara ; Jin, Di ; Kirkpatrick, Gary ; Fleming, Lora E. ; Ullmann, Steven G. ; Beet, Andrew R. ; Hitchcock, Gary ; Harrison, Kate K. ; Li, Zongchao C. ; Garrison, Bruce ; Diaz, Roberto E. ; Lovko, VinceIn the Gulf of Mexico, especially along the southwest Florida coast, blooms of the dinoflagellate Karenia brevis are a coastal natural hazard. The organism produces a potent class of toxins, known as brevetoxins, which are released following cell lysis into ocean or estuarine waters or, upon aerosolization, into the atmosphere. When exposed to sufficient levels of brevetoxins, humans may suffer from respiratory, gastrointestinal, or neurological illnesses. The hazard has been exacerbated by the geometric growth of human populations, including both residents and tourists, along Florida’s southwest coast. Impacts to marine organisms or ecosystems also may occur, such as fish kills or deaths of protected mammals, turtles, or birds. Since the occurrence of a severe Karenia brevis bloom off the southwest Florida coast three-quarters of a century ago, there has been an ongoing debate about the best way for humans to mitigate the impacts of this hazard. Because of the importance of tourism to coastal Florida, there are incentives for businesses and governments alike to obfuscate descriptions of these blooms, leading to the social amplification of risk. We argue that policies to improve the public’s ability to understand the physical attributes of blooms, specifically risk communication policies, are to be preferred over physical, chemical, or biological controls. In particular, we argue that responses to this type of hazard must emphasize maintaining the continuity of programs of scientific research, environmental monitoring, public education, and notification. We propose a common-sense approach to risk communication, comprising a simplification of the public provision of existing sources of information to be made available on a mobile website.
-
PresentationCHANS : the characteristics of cost-effective policy responses for harmful algal blooms [poster]( 2015-11-11) Hoagland, Porter ; Kirkpatrick, Barbara ; Kirkpatrick, Gary ; Hitchcock, Gary ; Ullmann, Steven G. ; Reich, Andrew ; Fleming, Lora E. ; Jin, Di ; Beet, Andrew R. ; Li, Cathy ; Garrison, Bruce ; Lovko, Vince ; Kohler, Kate ; Rudge, KatrinA growing concern for coastal management is the choice of appropriate public or private responses to HABs as a natural hazard. Considerable efforts have been devoted to understanding the scientific aspects of HABs, including their distributions in space and time, their ecological roles, and the nature of their toxic effects, among others. Much energy also has been directed at exploring socio-economic impacts and identifying potential management actions, including actions to prevent, control, or mitigate blooms. Using blooms of Florida red tide (Karenia brevis) as a case study, we develop an approach to the choice of policy responses to K. brevis blooms. Importantly, several new types of public health, environmental, and socio-economic impacts now are beginning to be revealed, including human gastrointestinal and potential neurological illnesses; morbidities and mortalities of protected species, including manatees, cetaceans, and sea turtles; increased numbers of hospital emergency room visits for the elderly; increased respiratory morbidities in workers, such as beach lifeguards; and potential reduced K- 12 school attendance. Optimal policy responses to this hazard are likely to depend critically upon why and where a bloom occurs, its spatial and temporal scales and toxicity, and the nature of its impacts. In the face of significant ongoing scientific uncertainties, and given estimates of impacts, we find that policies to expand and stabilize scientific research programs and environmental monitoring efforts, to develop and implement education programs for both residents and tourists, and to communicate the physical aspects of blooms to the public in a timely fashion are likely optimal.
-
PresentationCHANS : modeling the dynamics of HABs, human communities, and policy choices along the Florida Gulf Coast( 2015-11-19) Hoagland, Porter ; Kirkpatrick, Barbara ; Kirkpatrick, Gary ; Hitchcock, Gary ; Ullmann, Steven G. ; Reich, Andrew ; Fleming, Lora E. ; Jin, Di ; Beet, Andrew R. ; Li, Cathy ; Garrison, Bruce ; Lovko, Vince ; Kohler, Kate ; Rudge, KatrinCoupled human-nature systems (CHANS) involve dynamic interactions between humans and nature, often influenced by and affecting the distinct dynamic characteristics of each component. We present an overview of an ongoing interdisciplinary research program focused on a specific type of systems that couple expanding and fluctuating human coastal populations to episodic blooms of toxic marine algae, drawing examples primarily from human interactions with blooms of the toxic dinoflagellate Karenia brevis from the eastern Gulf of Mexico (“Florida red tides”). We introduce a set of HAB Symposium “speed” presentations and associated posters based on multi-disciplinary research. Using extant, but extraordinary, data to specify empirical models, this program of research has focused on characterizing the influence of anthropogenic sources on K. brevis blooms, assessing the public health and economic impacts of these blooms in an exposure-response framework, and defining the choice of appropriate human policy responses to the hazard. We present examples of the generic aspects of CHANS systems in the context of Florida red tides, and we discuss also some of the challenges involved in compiling and analyzing the relevant data to support our positive and normative analytical efforts.
-
ArticleMesocosm study of PAC-modified clay effects on Karenia brevis cells and toxins, chemical dynamics, and benthic invertebrate physiology(Elsevier, 2024-02-28) Devillier, Victoria M. ; Hall, Emily R. ; Lovko, Vincent J. ; Pierce, Richard H. ; Anderson, Donald M. ; Lewis, Kristy A.Modified clay compounds are used globally as a method of controlling harmful algal blooms, and their use is currently under consideration to control Karenia brevis blooms in Florida, USA. In 1400 L mesocosm tanks, chemical dynamics and lethal and sublethal impacts of MC II, a polyaluminum chloride (PAC)-modified kaolinite clay, were evaluated over 72 h on a benthic community representative of Sarasota Bay, which included blue crab (Callinectes sapidus), sea urchin (Lytechinus variegatus), and hard clam (Mercenaria campechiensis). In this experiment, MC II was dosed at 0.2 g L - 1 to treat bloom-level densities of K. brevis at 1 × 106 cells L - 1. Cell removal in MC II-treated tanks was 57% after 8 h and 95% after 48 h. In the water column, brevetoxin analogs BTx-1 and BTx-2 were found to be significantly higher in untreated tanks at 24 and 48 h, while in MC II-treated tanks, BTx-3 was found to be higher at 48 h and BTx-B5 was found to be higher at 24 and 48 h. In MC II floc, we found no significant differences in BTx-1 or BTx-2 between treatments for any time point, while BTx-3 was found to be significantly higher in the MC II-treated tanks at 48 and 72 h, and BTx-B5 was higher in MC II-treated tanks at 24 and 72 h. Among various chemical dynamics observed, it was notable that dissolved phosphorus was consistently significantly lower in MC II tanks after 2 h, and that turbidity in MC II tanks returned to control levels 48 h after treatment. Dissolved inorganic carbon and total seawater alkalinity were significantly reduced in MC II tanks, and partial pressure of CO2 (pCO2) was significantly higher in the MC II-only treatment after 2 h. In MC II floc, particulate phosphorus was found to be significantly higher in MC II tanks after 24 h. In animals, lethal and sublethal responses to MC II-treated K. brevis did not differ from untreated K. brevis for either of our three species at any time point, suggesting MC II treatment at this dosage has negligible impacts to these species within 72 h of exposure. These results appear promising in terms of the environmental safety of MC II as a potential bloom control option, and we recommend scaling up MC II experiments to field trials in order to gain deeper understanding of MC II performance and dynamics in natural waters.