Dong Sijia

No Thumbnail Available
Last Name
Dong
First Name
Sijia
ORCID
0000-0002-5811-9333

Search Results

Now showing 1 - 10 of 10
  • Dataset
    Suspended PIC, PC, PN data collected along a North Pacific transect between Hawaii and Alaska on R/V Kilo Moana cruise KM1712 in August 2017
    (Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu, 2021-09-23) Dong, Sijia ; Berelson, William M. ; Adkins, Jess F. ; Subhas, Adam V. ; Rollins, Nick E.
    This dataset includes general measurements for in situ pump casts at 5 stations on a transect between Hawaii and Alaska. Data was collected in August 2017 onboard R/V Kilo Moana cruise KM1712. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/860409
  • Dataset
    Compiled global dataset of PIC/POC and bSi concentrations measured by in situ pumps on multiple research cruises conducted from between 1973 and 2013
    (Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu, 2022-11-28) Pavia, Frank J. ; Dong, Sijia ; Lam, Phoebe J. ; Subhas, Adam V.
    This dataset is a compiled global dataset of inorganic and organic carbon and biogenic silica concentrations measured by in situ pumps. We merged the Multiple Unit Large Volume in-situ Filtration System (MULVFS, Bishop et al. 1985) LVP PIC, POC, and bSi dataset published partially in Lam et al. 2011 with new data collected using McLane in-situ pumps equipped with two size-fractionating filters during the GEOTRACES program. The filter sizes generally consist of a 51 micrometer (μm) or 53μm pre-filter that collects large particles, followed by a 0.8μm or 1μm filter that collects smaller particles. We annotate large size fraction particles (>53μm or >51μm) as "LSF", and small size fraction particles (1-53μm or 0.8-51μm) denoted "SSF" (small size fraction). For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/883965
  • Dataset
    In situ experimentally determined dissolution rates of biogenic calcites along a North Pacific transect between Hawaii and Alaska (KM1712 expedition) in August 2017
    (Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu, 2022-08-03) Berelson, William M. ; Adkins, Jess F. ; Subhas, Adam V. ; Dong, Sijia ; Naviaux, John D.
    This dataset includes biogenic and inorganic calcite and aragonite dissolution rates from the CDisK-IV cruise in the North Pacific Ocean, August 2017. We include niskin incubator alkalinity, pH, silicate, phosphate, and nitrate data, as well as calculated saturation state and dissolution rates. Rates are reported in units of g/g/day and also g/cm2/day, normalized by the specific surface areas of the materials used. Dissolution rates of inorganic aragonite and calcite, along with biogenic E. huxleyi liths, a planktic foraminifera assemblage, and a benthic foraminifera Amphistegina species, are provided, for 4 out of the 6 stations occupied on the cruise. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/856409
  • Dataset
    Carbonate chemistry and CTD data collected along a North Pacific transect between Hawaii and Alaska on R/V Kilo Moana cruise KM1712 in August 2017
    (Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu, 2022-02-01) Dong, Sijia ; Liu, Xuewu ; Naviaux, John D. ; Subhas, Adam V. ; Rollins, Nick E. ; Adkins, Jess F. ; Berelson, William M.
    This dataset includes carbonate chemistry and general measurements from CTD casts at 6 stations between Hawaii and Alaska. Data were collected in August 2017 onboard R/V Kilo Moana. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/836954
  • Dataset
    Carbonate chemistry and CTD data collected along a North Pacific transect between Hawaii and Alaska on R/V Kilo Moana cruise KM1712 in August 2017
    (Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu, 2021-01-20) Dong, Sijia ; Liu, Xuewu ; Naviaux, John D. ; Subhas, Adam V. ; Rollins, Nick E. ; Adkins, Jess F. ; Berelson, William M.
    This dataset includes carbonate chemistry and general measurements from CTD casts at 6 stations between Hawaii and Alaska. Data were collected in August 2017 onboard R/V Kilo Moana. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/836954
  • Dataset
    Sinking PIC, PC in shallow sediment traps collected along a North Pacific transect between Hawaii and Alaska on R/V Kilo Moana cruise KM1712 in August 2017
    (Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu, 2021-09-23) Dong, Sijia ; Berelson, William M. ; Adkins, Jess F. ; Subhas, Adam V. ; Rollins, Nick E.
    This dataset includes general measurements for sediment trap casts at 5 stations along a transect between Hawaii and Alaska. Data was collected in August 2017 onboard R/V Kilo Moana cruise KM1712. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/860424
  • Article
    Shallow calcium carbonate cycling in the North Pacific Ocean
    (American Geophysical Union, 2022-05-06) Subhas, Adam V. ; Dong, Sijia ; Naviaux, John D. ; Rollins, Nick E. ; Ziveri, Patrizia ; Gray, William R. ; Rae, James W. B. ; Liu, Xuewu ; Byrne, Robert H. ; Chen, Sang ; Moore, Christopher ; Martell-Bonet, Loraine ; Steiner, Zvi ; Antler, Gilad ; Hu, Huanting ; Lunstrum, Abby ; Hou, Yi ; Kemnitz, Nathaniel ; Stutsman, Johnny ; Pallacks, Sven ; Dugenne, Mathilde ; Quay, Paul D. ; Berelson, William M. ; Adkins, Jess F.
    The cycling of biologically produced calcium carbonate (CaCO3) in the ocean is a fundamental component of the global carbon cycle. Here, we present experimental determinations of in situ coccolith and foraminiferal calcite dissolution rates. We combine these rates with solid phase fluxes, dissolved tracers, and historical data to constrain the alkalinity cycle in the shallow North Pacific Ocean. The in situ dissolution rates of coccolithophores demonstrate a nonlinear dependence on saturation state. Dissolution rates of all three major calcifying groups (coccoliths, foraminifera, and aragonitic pteropods) are too slow to explain the patterns of both CaCO3 sinking flux and alkalinity regeneration in the North Pacific. Using a combination of dissolved and solid-phase tracers, we document a significant dissolution signal in seawater supersaturated for calcite. Driving CaCO3 dissolution with a combination of ambient saturation state and oxygen consumption simultaneously explains solid-phase CaCO3 flux profiles and patterns of alkalinity regeneration across the entire N. Pacific basin. We do not need to invoke the presence of carbonate phases with higher solubilities. Instead, biomineralization and metabolic processes intimately associate the acid (CO2) and the base (CaCO3) in the same particles, driving the coupled shallow remineralization of organic carbon and CaCO3. The linkage of these processes likely occurs through a combination of dissolution due to zooplankton grazing and microbial aerobic respiration within degrading particle aggregates. The coupling of these cycles acts as a major filter on the export of both organic and inorganic carbon to the deep ocean.
  • Dataset
    In situ experimentally determined dissolution rates of biogenic calcites along a North Pacific transect between Hawaii and Alaska (KM1712 expedition) in August 2017
    (Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu, 2021-08-20) Berelson, William M. ; Adkins, Jess F. ; Subhas, Adam V. ; Dong, Sijia ; Naviaux, John D.
    This dataset includes biogenic and inorganic calcite and aragonite dissolution rate data from the CDisK-IV cruise in the North Pacific Ocean, August 2017. We include niskin incubator alkalinity, pH, silicate, phosphate, and nitrate data, as well as calculated saturation state and dissolution rates. Rates are reported in units of g/g/day and also g/cm2/day, normalized by the specific surface areas of the materials used. Dissolution rates of inorganic aragonite and calcite, along with biogenic E. huxleyi liths, a planktic foraminifera assemblage, and a benthic foraminifera Amphistegina species, are provided, for 4 out of the 6 stations occupied on the cruise. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/856409
  • Article
    Global trends in the distribution of biogenic minerals in the ocean
    (American Geophysical Union, 2023-02-03) Subhas, Adam V. ; Pavia, Frank J. ; Dong, Sijia ; Lam, Phoebe J.
    The cycling of marine particulate matter is critical for sequestering carbon in the deep ocean and in marine sediments. Biogenic minerals such as calcium carbonate (CaCO3) and opal add density to more buoyant organic material, facilitating particle sinking and export. Here, we compile and analyze a global data set of particulate organic carbon (POC), particulate inorganic carbon (PIC, or CaCO3), and biogenic silica (bSi, or opal) concentrations collected using large volume pumps (LVPs). We analyze the distribution of all three biogenic phases in the small (1–53 μm) and large (>53 μm) size classes. Over the entire water column 76% of POC exists in the small size fraction. Similarly, the small size class contains 82% of PIC, indicating the importance of small‐sized coccolithophores to the PIC budget of the ocean. In contrast, 50% of bSi exists in the large size fraction, reflecting the larger size of diatoms and radiolarians compared with coccolithophores. We use PIC:POC and bSi:POC ratios in the upper ocean to document a consistent signal of shallow mineral dissolution, likely linked to biologically mediated processes. Sediment trap PIC:POC and bSi:POC are elevated with respect to LVP samples and increase strongly with depth, indicating the concentration of mineral phases and/or a deficit of POC in large sinking particles. We suggest that future sampling campaigns pair LVPs with sediment traps to capture the full particulate field, especially the large aggregates that contribute to mineral‐rich deep ocean fluxes, and may be missed by LVPs.
  • Article
    Authigenic Formation of Clay Minerals in the Abyssal North Pacific
    (American Geophysical Union, 2022-11-02) Steiner, Zvi ; Rae, James W. B. ; Berelson, William M. ; Adkins, Jess F. ; Hou, Yi ; Dong, Sijia ; Lampronti, Giulio I. ; Liu, Xuewu ; Achterberg, Eric P. ; Subhas, Adam V. ; Turchyn, Alexandra V.
    Present estimates of the biogeochemical cycles of calcium, strontium, and potassium in the ocean reveal large imbalances between known input and output fluxes. Using pore fluid, incubation, and solid sediment data from North Pacific multi‐corer cores we show that, contrary to the common paradigm, the top centimeters of abyssal sediments can be an active site of authigenic precipitation of clay minerals. In this region, clay authigenesis is the dominant sink for potassium and strontium and consumes nearly all calcium released from benthic dissolution of calcium carbonates. These observations support the idea that clay authigenesis occurring over broad regions of the world ocean may be a major buffer for ocean chemistry on the time scale of the ocean overturning circulation, and key to the long‐term stability of Earth's climate.Key PointsNorth Pacific red clay sediments are a sink for marine calcium, strontium, and potassiumAuthigenic formation of clay minerals is prevalent in pelagic sediments throughout the North PacificThe main mechanism for clay formation is recrystallization of aluminosilicates, neoformation can occur in biogenic silica rich sediments