Northen
Trent R.
Northen
Trent R.
No Thumbnail Available
Search Results
Now showing
1 - 2 of 2
-
ArticleToward a predictive understanding of Earth’s microbiomes to address 21st century challenges(American Society for Microbiology, 2016-05-13) Blaser, Martin J. ; Cardon, Zoe G. ; Cho, Mildred K. ; Dangl, Jeffery ; Donohue, Timothy J. ; Green, Jessica L. ; Knight, Rob ; Maxon, Mary E. ; Northen, Trent R. ; Pollard, Katherine ; Brodie, Eoin L.Microorganisms have shaped our planet and its inhabitants for over 3.5 billion years. Humankind has had a profound influence on the biosphere, manifested as global climate and land use changes, and extensive urbanization in response to a growing population. The challenges we face to supply food, energy, and clean water while maintaining and improving the health of our population and ecosystems are significant. Given the extensive influence of microorganisms across our biosphere, we propose that a coordinated, cross-disciplinary effort is required to understand, predict, and harness microbiome function. From the parallelization of gene function testing to precision manipulation of genes, communities, and model ecosystems and development of novel analytical and simulation approaches, we outline strategies to move microbiome research into an era of causality. These efforts will improve prediction of ecosystem response and enable the development of new, responsible, microbiome-based solutions to significant challenges of our time.
-
ArticleSubstrate availability and not thermal acclimation controls microbial temperature sensitivity response to long‐term warming(Wiley, 2022-11-30) Domeignoz‐Horta, Luiz A. ; Pold, Grace ; Erb, Hailey ; Sebag, David ; Verrecchia, Eric ; Northen, Trent ; Louie, Katherine ; Eloe‐Fadrosh, Emiley ; Pennacchio, Christa ; Knorr, Melissa A. ; Frey, Serita D. ; Melillo, Jerry M. ; DeAngelis, Kristen M.Microbes are responsible for cycling carbon (C) through soils, and predicted changes in soil C stocks under climate change are highly sensitive to shifts in the mechanisms assumed to control the microbial physiological response to warming. Two mechanisms have been suggested to explain the long‐term warming impact on microbial physiology: microbial thermal acclimation and changes in the quantity and quality of substrates available for microbial metabolism. Yet studies disentangling these two mechanisms are lacking. To resolve the drivers of changes in microbial physiology in response to long‐term warming, we sampled soils from 13‐ and 28‐year‐old soil warming experiments in different seasons. We performed short‐term laboratory incubations across a range of temperatures to measure the relationships between temperature sensitivity of physiology (growth, respiration, carbon use efficiency, and extracellular enzyme activity) and the chemical composition of soil organic matter. We observed apparent thermal acclimation of microbial respiration, but only in summer, when warming had exacerbated the seasonally‐induced, already small dissolved organic matter pools. Irrespective of warming, greater quantity and quality of soil carbon increased the extracellular enzymatic pool and its temperature sensitivity. We propose that fresh litter input into the system seasonally cancels apparent thermal acclimation of C‐cycling processes to decadal warming. Our findings reveal that long‐term warming has indirectly affected microbial physiology via reduced C availability in this system, implying that earth system models including these negative feedbacks may be best suited to describe long‐term warming effects on these soils.Warming can accelerate or decelerate soil microbial response to warmer temperatures. Here we provide support for the hypothesis that microbial temperature sensitivity is contingent upon substrate availability, which itself is reduced by warming. Thus we show the complex interplay between microbial activity and changes in soil carbon stocks.