Richards Clark G.

No Thumbnail Available
Last Name
First Name
Clark G.

Search Results

Now showing 1 - 9 of 9
  • Article
    Accuracy and long-term stability assessment of inductive conductivity cell measurements on Argo Floats
    (American Meteorological Society, 2020-12-01) Nezlin, Nikolay P. ; Dever, Mathieu ; Halverson, Mark ; Leconte, Jean-Michel ; Maze, Guillaume ; Richards, Clark G. ; Shkvorets, Igor ; Zhang, Rui ; Johnson, Greg
    This study demonstrates the long-term stability of salinity measurements from Argo floats equipped with inductive conductivity cells, which have extended float lifetimes as compared to electrode-type cells. New Argo float sensor payloads must meet the demands of the Argo governance committees before they are implemented globally. Currently, the use of CTDs with inductive cells designed and manufactured by RBR, Ltd., has been approved as a Global Argo Pilot. One requirement for new sensors is to demonstrate stable measurements over the lifetime of a float. To demonstrate this, data from four Argo floats in the western Pacific Ocean equipped with the RBRargo CTD sensor package are analyzed using the same Owens–Wong–Cabanes (OWC) method and reference datasets as the Argo delayed-mode quality control (DMQC) operators. When run with default settings against the standard DMQC Argo and CTD databases, the OWC analysis reveals no drift in any of the four RBRargo datasets and, in one case, an offset exceeding the Argo target salinity limits. Being a statistical tool, the OWC method cannot strictly determine whether deviations in salinity measurements with respect to a reference hydrographic product (e.g., climatologies) are caused by oceanographic variability or sensor problems. So, this study furthermore investigates anomalous salinity measurements observed when compared with a reference product and demonstrates that anomalous values tend to occur in regions with a high degree of variability and can be better explained by imperfect reference data rather than sensor drift. This study concludes that the RBR inductive cell is a viable option for salinity measurements as part of the Argo program.
  • Article
    Static and dynamic performance of the RBRargo3 CTD
    (American Meteorological Society, 2022-10-01) Dever, Mathieu ; Owens, W. Brechner ; Richards, Clark G. ; Wijffels, Susan E. ; Wong, Annie P. S. ; Shkvorets, Igor ; Halverson, Mark ; Johnson, Greg
    The static and dynamic performances of the RBRargo3 are investigated using a combination of laboratory-based and in situ datasets from floats deployed as part of an Argo pilot program. Temperature and pressure measurements compare well to co-located reference data acquired from shipboard CTDs. Static accuracy of salinity measurements is significantly improved using 1) a time lag for temperature, 2) a quadratic pressure dependence, and 3) a unit-based calibration for each RBRargo3 over its full pressure range. Long-term deployments show no significant drift in the RBRargo3 accuracy. The dynamic response of the RBRargo3 demonstrates the presence of two different adjustment time scales: a long-term adjustment O(120) s, driven by the temperature difference between the interior of the conductivity cell and the water, and a short-term adjustment O(5–10) s, associated to the initial exchange of heat between the water and the inner ceramic. Corrections for these effects, including dependence on profiling speed, are developed.
  • Preprint
    Sediment resuspension and nepheloid layers induced by long internal solitary waves shoaling orthogonally on uniform slopes
    ( 2013-10-20) Bourgault, Daniel ; Morsilli, M. ; Richards, Clark G. ; Neumeier, U. ; Kelley, Daniel E.
    Two-dimensional, nonlinear and nonhydrostatic field-scale numerical simulations are used to examine the resuspension, dispersal and transport of mud-like sediment caused by the shoaling and breaking of long internal solitary waves on uniform slopes. The patterns of erosion and transport are both examined, in a series of test cases with varying conditions. Shoreward sediment movement is mainly within boluses, while seaward movement is within intermediate nepheloid layers. Several relationships between properties of the suspended sediment and control parameters are determined such as the horizontal extent of the nehpeloid layers, the total mass of resuspended sediment and the point of maximum bed erosion. The numerical results provide a plausible explanation for acoustic backscatter patterns observed during and after the shoaling of internal solitary wavetrains in a natural coastal environment. The results may further help interpret sedimentary structures that may have been shaped by internal waves and add an another e ective mechanism for o shore dispersal of muddy sediments.
  • Article
    Observations of water mass transformation and eddies in the Lofoten basin of the Nordic Seas
    (American Meteorological Society, 2015-06) Richards, Clark G. ; Straneo, Fiamma
    The Lofoten basin of the Nordic Seas is recognized as a crucial component of the meridional overturning circulation in the North Atlantic because of the large horizontal extent of Atlantic Water and winter surface buoyancy loss. In this study, hydrographic and current measurements collected from a mooring deployed in the Lofoten basin from July 2010 to September 2012 are used to describe water mass transformation and the mesoscale eddy field. Winter mixed layer depths (MLDs) are observed to reach approximately 400 m, with larger MLDs and denser properties resulting from the colder 2010 winter. A heat budget of the upper water column requires lateral input, which balances the net annual heat loss of ~80 W m−2. The lateral flux is a result of mesoscale eddies, which dominate the velocity variability. Eddy velocities are enhanced in the upper 1000 m, with a barotropic component that reaches the bottom. Detailed examination of two eddies, from April and August 2012, highlights the variability of the eddy field and eddy properties. Temperature and salinity properties of the April eddy suggest that it originated from the slope current but was ventilated by surface fluxes. The properties within the eddy were similar to those of the mode water, indicating that convection within the eddies may make an important contribution to water mass transformation. A rough estimate of eddy flux per unit boundary current length suggests that fluxes in the Lofoten basin are larger than in the Labrador Sea because of the enhanced boundary current–interior density difference.
  • Preprint
    Upstream sources of the Denmark Strait Overflow : observations from a high-resolution mooring array
    ( 2016-02-19) Harden, Benjamin E. ; Pickart, Robert S. ; Valdimarsson, Héðinn ; Våge, Kjetil ; de Steur, Laura ; Richards, Clark G. ; Bahr, Frank B. ; Torres, Daniel J. ; Børve, Eli ; Jonsson, Steingrimur ; Macrander, Andreas ; Østerhus, Svein ; Håvik, Lisbeth ; Hattermann, Tore
    We present the first results from a densely instrumented mooring array upstream of the Denmark Strait sill, extending from the Iceland shelfbreak to the Greenland shelf. The array was deployed from September 2011 to July 2012, and captured the vast majority of overflow water denser than 27.8 kgm-3 approaching the sill. The mean transport of overflow water over the length of the deployment was 3.54 ± 0.16 Sv. Of this, 0.58 Sv originated from below sill depth, revealing that aspiration takes place in Denmark Strait. We confirm the presence of two main sources of overflow water: one approaching the sill in the East Greenland Current and the other via the North Icelandic Jet. Using an objective technique based on the hydrographic properties of the water, the transports of these two sources are found to be 2.54 ± 0.17 Sv and 1.00 ± 0.17 Sv, respectively. We further partition the East Greenland Current source into that carried by the shelfbreak jet (1.50 ± 0.16 Sv) versus that transported by a separated branch of the current on the Iceland slope (1.04 ± 0.15 Sv). Over the course of the year the total overflow transport is more consistent than the transport in either branch; compensation takes place among the pathways that maintains a stable total overflow transport. This is especially true for the two East Greenland Current branches whose transports vary out of phase with each other on weekly and longer time scales. We argue that wind forcing plays a role in this partitioning.
  • Article
    Large spatial variations in the flux balance along the front of a Greenland tidewater glacier
    (European Geosciences Union, 2019-03-15) Wagner, Till ; Straneo, Fiamma ; Richards, Clark G. ; Slater, Donald A. ; Stevens, Laura A. ; Das, Sarah B. ; Singh, Hanumant
    The frontal flux balance of a medium-sized tidewater glacier in western Greenland in the summer is assessed by quantifying the individual components (ice flux, retreat, calving, and submarine melting) through a combination of data and models. Ice flux and retreat are obtained from satellite data. Submarine melting is derived using a high-resolution ocean model informed by near-ice observations, and calving is estimated using a record of calving events along the ice front. All terms exhibit large spatial variability along the ∼5 km wide ice front. It is found that submarine melting accounts for much of the frontal ablation in small regions where two subglacial discharge plumes emerge at the ice front. Away from the subglacial plumes, the estimated melting accounts for a small fraction of frontal ablation. Glacier-wide, these estimates suggest that mass loss is largely controlled by calving. This result, however, is at odds with the limited presence of icebergs at this calving front – suggesting that melt rates in regions outside of the subglacial plumes may be underestimated. Finally, we argue that localized melt incisions into the glacier front can be significant drivers of calving. Our results suggest a complex interplay of melting and calving marked by high spatial variability along the glacier front.
  • Article
    Localized plumes drive front-wide ocean melting of a Greenlandic tidewater glacier
    (American Geophysical Union, 2018-11-15) Slater, Donald A. ; Straneo, Fiamma ; Das, Sarah B. ; Richards, Clark G. ; Wagner, Till
    Recent acceleration of Greenland's ocean‐terminating glaciers has substantially amplified the ice sheet's contribution to global sea level. Increased oceanic melting of these tidewater glaciers is widely cited as the likely trigger, and is thought to be highest within vigorous plumes driven by freshwater drainage from beneath glaciers. Yet melting of the larger part of calving fronts outside of plumes remains largely unstudied. Here we combine ocean observations collected within 100 m of a tidewater glacier with a numerical model to show that unlike previously assumed, plumes drive an energetic fjord‐wide circulation which enhances melting along the entire calving front. Compared to estimates of melting within plumes alone, this fjord‐wide circulation effectively doubles the glacier‐wide melt rate, and through shaping the calving front has a potential dynamic impact on calving. Our results suggest that melting driven by fjord‐scale circulation should be considered in process‐based projections of Greenland's sea level contribution.
  • Article
    Structure and dynamics of a subglacial discharge plume in a Greenlandic fjord
    (John Wiley & Sons, 2016-12-15) Mankoff, Kenneth D. ; Straneo, Fiamma ; Cenedese, Claudia ; Das, Sarah B. ; Richards, Clark G. ; Singh, Hanumant
    Discharge of surface-derived meltwater at the submerged base of Greenland's marine-terminating glaciers creates subglacial discharge plumes that rise along the glacier/ocean interface. These plumes impact submarine melting, calving, and fjord circulation. Observations of plume properties and dynamics are challenging due to their proximity to the calving edge of glaciers. Therefore, to date information on these plumes has been largely derived from models. Here we present temperature, salinity, and velocity data collected in a plume that surfaced at the edge of Saqqarliup Sermia, a midsized Greenlandic glacier. The plume is associated with a narrow core of rising waters approximately 20 m in diameter at the ice edge that spreads to a 200 m by 300 m plume pool as it reaches the surface, before descending to its equilibrium depth. Volume flux estimates indicate that the plume is primarily driven by subglacial discharge and that this has been diluted in a ratio of 1:10 by the time the plume reaches the surface. While highly uncertain, meltwater fluxes are likely 2 orders of magnitude smaller than the subglacial discharge flux. The overall plume characteristics agree with those predicted by theoretical plume models for a convection-driven plume with limited influence from submarine melting.
  • Article
    Measurements of shoaling internal waves and turbulence in an estuary
    (John Wiley & Sons, 2013-01-30) Richards, Clark G. ; Bourgault, Daniel ; Galbraith, Peter S. ; Hay, Alex ; Kelley, Daniel E.
    The shoaling of horizontally propagating internal waves may represent an important source of mixing and transport in estuaries and coastal seas. Including such effects in numerical models demands improvements in the understanding of several aspects of the energetics, especially those relating to turbulence generation, and observations are needed to build this understanding. To address some of these issues in the estuarine context, we undertook an intensive field program for 10 days in the summer of 2008 in the St. Lawrence Estuary. The sampling involved shore-based photogrammetry, ship-based surveys, and an array of moorings in the shoaling region that held both conventional and turbulence-resolving sensors. The measurements shed light on many aspects of the wave shoaling process. Wave arrivals were generally phase-locked with the M2 tide, providing hints about far-field forcing. In the deeper part of the study domain, the waves propagated according to the predictions of linear theory. In intermediate-depth waters, the waves traversed the field site perpendicularly to isobaths, a pattern that continued as the waves transformed nonlinearly. Acoustic Doppler velocimeters permitted inference of the turbulent energetics, and two main features were studied. First, during a period of shoaling internal waves, turbulence dissipation rates exceeded values associated with tidal shear by an order of magnitude. Second, the evolving spectral signatures associated with a particular wave-shoaling event suggest that the turbulence is at least partly locally generated. Overall, the results of this study suggest that parameterizations of wave-induced mixing could employ relatively simple dynamics in deep water, but may have to handle a wide suite of turbulence generation and transport mechanisms in inshore regions.