Gonneea
Meagan E.
Gonneea
Meagan E.
No Thumbnail Available
19 results
Search Results
Now showing
1 - 19 of 19
-
PreprintGeochemical and physical sources of radon variation in a subterranean estuary — implications for groundwater radon activities in submarine groundwater discharge studies( 2007-12-13) Dulaiova, Henrieta ; Gonneea, Meagan E. ; Henderson, Paul B. ; Charette, Matthew A.Submarine groundwater discharge (SGD), in form of springs and diffuse seepage, has long been recognized as a source of chemical constituents to the coastal ocean. Because groundwater is two to four orders of magnitude richer in radon than surface water, it has been used as both a qualitative and a quantitative tracer of groundwater discharge. Besides this large activity gradient, the other perceived advantage of radon stems from its classification as noble gas; that is, its chemical behavior is expected not to be influenced by salinity, redox, and diagenetic conditions present in aquatic environments. During our three-year monthly sampling of the subterranean estuary (STE) in Waquoit Bay, MA, we found highly variable radon activities (50-1600 dpm L-1) across the fresh-saline interface of the aquifer. We monitored pore water chemistry and radon activity at 8 fixed depths spanning from 2 to 5.6 m across the STE, and found seasonal fluctuations in activity at depths where elevated radon was observed. We postulate that most of pore water 222Rn is produced from particle-surface bound 226Ra, and that the accumulation of this radium is likely regulated by the presence of manganese (hydr)oxides. Layers of manganese (hydr)oxides form at the salinity transition zone (STZ), where water with high salinity, high manganese, and low redox potential mixes with fresh water. Responding to the seasonality of aquifer recharge, the location of the STZ and the layers with radium enriched manganese (hydr)oxide follows the seasonal land- or bay-ward movement of the freshwater lens. This results in seasonal changes in the depth where elevated radon activities are observed. The conclusion of our study is that the freshwater part of the STE has a radon signature that is completely different from the STZ or recirculated sea water. Therefore, the radon activity in SGD will depend on the ratio of fresh and recirculated seawater in the discharging groundwater.
-
ArticleGEOTRACES radium isotopes interlaboratory comparison experiment(Association for the Sciences of Limnology and Oceanography, 2012-06) Charette, Matthew A. ; Dulaiova, Henrieta ; Gonneea, Meagan E. ; Henderson, Paul B. ; Moore, Willard S. ; Scholten, Jan C. ; Pham, Mai KhanhIn anticipation of the international GEOTRACES program, which will study the global marine biogeochemistry of trace elements and isotopes, we conducted a multi-lab intercomparison for radium isotopes. The intercomparison was in two parts involving the distribution of: (1) samples collected from four marine environments (open ocean, continental slope, shelf, and estuary) and (2) a suite of four reference materials prepared with isotopic standards (circulated to participants as 'unknowns'). Most labs performed well with 228Ra and 224Ra determination, however, there were a number of participants that reported 226Ra, 223Ra, and 228Th (supported 224Ra) well outside the 95% confidence interval. Many outliers were suspected to be a result of poorly calibrated detectors, though other method specific factors likely played a role (e.g., detector leakage, insufficient equilibration). Most methods for radium analysis in seawater involve a MnO2 fiber column preconcentration step; as such, we evaluated the extraction efficiency of this procedure and found that it ranged from an average of 87% to 94% for the four stations. Hence, nonquantitative radium recovery from seawater samples may also have played a role in lab-to-lab variability.
-
ArticleAuthor Correction : Accuracy and precision of tidal wetland soil carbon mapping in the conterminous United States(Nature Publishing Group, 2018-10-09) Holmquist, James R. ; Windham-Myers, Lisamarie ; Bliss, Norman B. ; Crooks, Stephen ; Morris, James T. ; Megonigal, J. Patrick ; Troxler, Tiffany G. ; Weller, Donald ; Callaway, John ; Drexler, Judith ; Ferner, Matthew C. ; Gonneea, Meagan E. ; Kroeger, Kevin D. ; Schile-Beers, Lisa ; Woo, Isa ; Buffington, Kevin ; Breithaupt, Joshua ; Boyd, Brandon M. ; Brown, Lauren N. ; Dix, Nicole ; Hice, Lyndie ; Horton, Benjamin P. ; MacDonald, Glen M. ; Moyer, Ryan P. ; Reay, William ; Shaw, Timothy ; Smith, Erik ; Smoak, Joseph M. ; Sommerfield, Christopher K. ; Thorne, Karen ; Velinsky, David ; Watson, Elizabeth ; Wilson Grimes, Kristin ; Woodrey, MarkThis Article corrects an error in Equation 1
-
ArticleWater salinity and inundation control soil carbon decomposition during salt marsh restoration: An incubation experiment.(Wiley Open Access, 2019-02-10) Wang, Faming ; Kroeger, Kevin D. ; Gonneea, Meagan E. ; Pohlman, John W. ; Tang, JianwuCoastal wetlands are a significant carbon (C) sink since they store carbon in anoxic soils. This ecosystem service is impacted by hydrologic alteration and management of these coastal habitats. Efforts to restore tidal flow to former salt marshes have increased in recent decades and are generally associated with alteration of water inundation levels and salinity. This study examined the effect of water level and salinity changes on soil organic matter decomposition during a 60‐day incubation period. Intact soil cores from impounded fresh water marsh and salt marsh were incubated after addition of either sea water or fresh water under flooded and drained water levels. Elevating fresh water marsh salinity to 6 to 9 ppt enhanced CO2 emission by 50%−80% and most typically decreased CH4 emissions, whereas, decreasing the salinity from 26 ppt to 19 ppt in salt marsh soils had no effect on CO2 or CH4 fluxes. The effect from altering water levels was more pronounced with drained soil cores emitting ~10‐fold more CO2 than the flooded treatment in both marsh sediments. Draining soil cores also increased dissolved organic carbon (DOC) concentrations. Stable carbon isotope analysis of CO2 generated during the incubations of fresh water marsh cores in drained soils demonstrates that relict peat OC that accumulated when the marsh was saline was preferentially oxidized when sea water was introduced. This study suggests that restoration of tidal flow that raises the water level from drained conditions would decrease aerobic decomposition and enhance C sequestration. It is also possible that the restoration would increase soil C decomposition of deeper deposits by anaerobic oxidation, however this impact would be minimal compared to lower emissions expected due to the return of flooding conditions.
-
PreprintRadium isotopes as tracers of iron sources fueling a Southern Ocean phytoplankton bloom( 2007-04-24) Charette, Matthew A. ; Gonneea, Meagan E. ; Morris, Paul J. ; Statham, Peter J. ; Fones, Gary R. ; Planquette, Helene ; Salter, Ian ; Naveira Garabato, Alberto C.Elevated levels of productivity in the wake of Southern Ocean island systems are common despite the fact that they are encircled by high nutrient low chlorophyll (HNLC) waters. In the Crozet Plateau region, it has been hypothesized that iron from island runoff or sediments of the plateau could be fueling the austral summer phytoplankton bloom. Here, we use radium isotopes to quantify the rates of surface ocean iron supply fueling the bloom in the Crozet Plateau region. A 1-D eddy-diffusion-mixing model applied to a 228Ra profile (t1/2 = 5.75 yr) at a station north of the islands suggested fast vertical mixing in the upper 300 m (Kz = 11-100 cm2 s- 1) with slower mixing between 300 and 1000 m (Kz = 1.5 cm2 s-1). This estimate is discussed in the context of Kz derived from the CTD/LADCP data. In combination with the dissolved Fe profile at this location, we estimated a vertical flux of between 5.6 and 31 nmol Fe m-2 d-1. The cross-plateau gradients in the short-lived radium isotopes, 224Ra (t1/2 = 3.66 d) and 223Ra (t1/2 = 11.4 d), yielded horizontal eddy diffusivities (Kh) of 39 m2 s-1 and 6.6 m2 s-1, respectively. If we assume that the islands (surface runoff) alone were supplying dissolved Fe to the bloom region, then the flux estimates range from 2.3 to 14 nmol Fe m-2 d-1. If the plateau sediments are considered a source of Fe, and conveyed to the bloom region through deep winter mixing combined with horizontal transport, then this flux may be as high as 64 to 390 nmol Fe m-2 d-1. Combined, these Fe sources are sufficient to initiate and maintain the annual phytoplankton bloom.
-
PreprintIsotopic, geophysical and biogeochemical investigation of submarine groundwater discharge : IAEA-UNESCO intercomparison exercise at Mauritius Island( 2011-09) Povinec, Pavel P. ; Burnett, William C. ; Beck, A. ; Bokuniewicz, Henry J. ; Charette, Matthew A. ; Gonneea, Meagan E. ; Groening, M. ; Ishitobi, T. ; Kontar, E. ; Kwong, L. Liong Wee ; Marie, D. E. P. ; Moore, Willard S. ; Oberdorfer, J. A. ; Peterson, R. ; Ramessur, R. ; Rapaglia, J. ; Stieglitz, T. ; Top, ZaferSubmarine groundwater discharge (SGD) into a shallow lagoon on the west coast of Mauritius Island (Flic-en-Flac) was investigated using radioactive (3H, 222Rn, 223Ra, 224Ra, 226Ra, 228Ra) and stable (2H, 18O) isotopes and nutrients. SGD intercomparison exercises were carried out to validate the various approaches used to measure SGD including radium and radon measurements, seepage-rate measurements using manual and automated meters, sediment bulk conductivity and salinity surveys. SGD measurements using benthic chambers placed on the floor of the Flic-en-Flac Lagoon showed discharge rates up to 500 cm/day. Large variability in SGD was observed over distances of a few meters, which were attributed to different geomorphological features. Deployments of automated seepage meters captured the spatial and temporal variability of SGD with a mean seepage rate of 10 cm/day. The stable isotopic composition of submarine waters was characterized by significant variability and heavy isotope enrichment and was used to predict the contribution of fresh terrestrially derived groundwater to SGD (range from a few % to almost 100 %). The integrated SGD flux, estimated from seepage meters placed parallel to the shoreline, was 35 m3/m day, which was in a reasonable agreement with results obtained from hydrologic water balance calculation (26 m3/m day). SGD calculated from the radon inventory method using in situ radon measurements were between 5 and 56 m3/m per day. Low concentrations of radium isotopes observed in the lagoon water reflected the low abundance of U and Th in the basalt that makes up the island. High SGD rates contribute to high nutrients loading to the lagoon, potentially leading to eutrophication. Each of the applied methods yielded unique information about the character and magnitude of SGD. The results of the intercomparison studies have resulted a better understanding of groundwater-seawater interactions in coastal regions. Such information is an important pre-requisite for the protection management of coastal freshwater resources.
-
ArticleErratum : GEOTRACES radium isotopes interlaboratory comparison experiment(Association for the Sciences of Limnology and Oceanography, 2012-06) Charette, Matthew A. ; Dulaiova, Henrieta ; Gonneea, Meagan E. ; Henderson, Paul B. ; Moore, Willard S. ; Scholten, Jan C. ; Pham, Mai KhanhIn our original paper, Charette, M. A., H. Dulaiova, M. E. Gonneea, P. B. Henderson, W. S. Moore, J. C. Scholten, and M. K. Pham. 2012. GEOTRACES radium isotopes interlaboratory comparison experiment. Limonol. Oceanogr.: Methods 10:451, the incorrect headers were used for Table 9.
-
ArticleGroundwater discharge impacts marine isotope budgets of Li, Mg, Ca, Sr, and Ba(Nature Research, 2021-01-08) Mayfield, Kimberley K. ; Eisenhauer, Anton ; Santiago Ramos, Danielle ; Higgins, John A. ; Horner, Tristan J. ; Auro, Maureen E. ; Magna, Tomas ; Moosdorf, Nils ; Charette, Matthew A. ; Gonneea, Meagan E. ; Brady, Carolyn E. ; Komar, Nemanja ; Peucker-Ehrenbrink, Bernhard ; Paytan, AdinaGroundwater-derived solute fluxes to the ocean have long been assumed static and subordinate to riverine fluxes, if not neglected entirely, in marine isotope budgets. Here we present concentration and isotope data for Li, Mg, Ca, Sr, and Ba in coastal groundwaters to constrain the importance of groundwater discharge in mediating the magnitude and isotopic composition of terrestrially derived solute fluxes to the ocean. Data were extrapolated globally using three independent volumetric estimates of groundwater discharge to coastal waters, from which we estimate that groundwater-derived solute fluxes represent, at a minimum, 5% of riverine fluxes for Li, Mg, Ca, Sr, and Ba. The isotopic compositions of the groundwater-derived Mg, Ca, and Sr fluxes are distinct from global riverine averages, while Li and Ba fluxes are isotopically indistinguishable from rivers. These differences reflect a strong dependence on coastal lithology that should be considered a priority for parameterization in Earth-system models.
-
PreprintNew perspectives on radium behavior within a subterranean estuary( 2007-04-02) Gonneea, Meagan E. ; Morris, Paul J. ; Dulaiova, Henrieta ; Charette, Matthew A.Over the past decade, radium isotopes have been frequently applied as tracers of submarine groundwater discharge (SGD). The unique radium signature of SGD is acquired within the subterranean estuary, a mixing zone between fresh groundwater and seawater in coastal aquifers, yet little is known about what controls Ra cycling in this system. The focus of this study was to examine controls on sediment and groundwater radium activities within permeable aquifer sands (Waquoit Bay, MA, USA) through a combination of field and laboratory studies. In the field, a series of sediment cores and corresponding groundwater profiles were collected for analysis of the four radium isotopes, as well as dissolved and sediment associated manganese, iron, and barium. We found that in addition to greater desorption at increasing salinity, radium was also closely tied to manganese and iron redox cycling within these sediments. A series of laboratory adsorption/desorption experiments helped elucidate the importance of 1) contact time between sediment and water, 2) salinity of water in contact with sediment, 3) redox conditions of water in contact with sediment, and 4) the chemical characteristics of sediment on radium adsorption/desorption. We found that these reactions are rapid (on the order of hours), desorption increases with increasing salinity and decreasing pH, and the presence of Fe and Mn (hydr)oxides on the sediment inhibit the release of radium. These sediments have a large capacity to sorb radium from fresh water. Combined with these experimental results, we present evidence from time series groundwater sampling that within this subterranean estuary there are cyclic periods of Ra accumulation and release controlled by changing salinity and redox conditions.
-
ArticleTwentieth century warming of the tropical Atlantic captured by Sr-U paleothermometry(John Wiley & Sons, 2017-02-16) Alpert, Alice ; Cohen, Anne L. ; Oppo, Delia W. ; DeCarlo, Thomas M. ; Gaetani, Glenn A. ; Hernandez-Delgado, Edwin A. ; Winter, Amos ; Gonneea, Meagan E.Coral skeletons are valuable archives of past ocean conditions. However, interpretation of coral paleotemperature records is confounded by uncertainties associated with single-element ratio thermometers, including Sr/Ca. A new approach, Sr-U, uses U/Ca to constrain the influence of Rayleigh fractionation on Sr/Ca. Here we build on the initial Pacific Porites Sr-U calibration to include multiple Atlantic and Pacific coral genera from multiple coral reef locations spanning a temperature range of 23.15–30.12°C. Accounting for the wintertime growth cessation of one Bermuda coral, we show that Sr-U is strongly correlated with the average water temperature at each location (r2 = 0.91, P < 0.001, n = 19). We applied the multispecies spatial calibration between Sr-U and temperature to reconstruct a 96 year long temperature record at Mona Island, Puerto Rico, using a coral not included in the calibration. Average Sr-U derived temperature for the period 1900–1996 is within 0.12°C of the average instrumental temperature at this site and captures the twentieth century warming trend of 0.06°C per decade. Sr-U also captures the timing of multiyear variability but with higher amplitude than implied by the instrumental data. Mean Sr-U temperatures and patterns of multiyear variability were replicated in a second coral in the same grid box. Conversely, Sr/Ca records from the same two corals were inconsistent with each other and failed to capture absolute sea temperatures, timing of multiyear variability, or the twentieth century warming trend. Our results suggest that coral Sr-U paleothermometry is a promising new tool for reconstruction of past ocean temperatures.
-
PreprintDissolved strontium in the subterranean estuary- implications for the marine strontium isotope budget( 2013-01-13) Beck, Aaron J. ; Charette, Matthew A. ; Cochran, J. Kirk ; Gonneea, Meagan E. ; Peucker-Ehrenbrink, BernhardSubmarine groundwater discharge (SGD) to the ocean supplies Sr with less radiogenic 87Sr/86Sr than seawater, and thus constitutes an important term in the Sr isotope budget in the modern ocean. However, few data exist for Sr in coastal groundwater or in the geochemically dynamic subterranean estuary (STE). We examined Sr concentrations and isotope ratios from nine globally-distributed coastal sites and characterized the behavior of Sr in the STE. Dissolved Sr generally mixed conservatively in the STE, although large differences were observed in the meteoric groundwater end-member Sr concentrations among sites (0.1 – 24 μM Sr). Strontium isotope exchange was observed in the STE at five of the sites studied, and invariably favored the meteoric groundwater end-member signature. Most of the observed isotope exchange occurred in the salinity range 5-15, and reached up to 40% exchange at salinity 10. Differences in fresh groundwater Sr concentrations and isotope ratios (87Sr/86Sr = 0.707-0.710) reflected aquifer lithology. The SGD end-member 87Sr/86Sr must be lower than modern seawater (i.e., less than 0.70916) in part because groundwater Sr concentrations are orders of magnitude higher in less-carbonate and volcanic island aquifers. A simple lithological model and groundwater Sr data compiled from the literature were used to estimate a global average groundwater end-member of 2.9 μM Sr with 87Sr/86Sr = 0.7089. This represents a meteoric-SGD-driven Sr input to the ocean of 0.7-2.8 × 1010 mol Sr y-1. Meteoric SGD therefore accounts for 2-8% of the oceanic Sr isotope budget, comparable to other known source terms, but is insufficient to balance the remainder of the budget. Using reported estimates for brackish SGD, the estimated volume discharge at salinity 10 (7-11 × 1015 L y-1) was used to evaluate the impact of isotope exchange in the STE on the brackish SGD Sr flux. A moderate estimate of 25% isotope exchange in the STE gives an SGD Sr end-member 87Sr/86Sr of 0.7091. The brackish SGD Sr flux thus accounts for 11-23% of the marine Sr isotope budget, but does not appear sufficient to balance the ~40% remaining after other known sources are included. Substantial uncertainties remain for estimating the SGD source of Sr to the global ocean, especially in the determination of the volume flux of meteoric SGD, and in the paucity of measurements of groundwater Sr isotope composition in major SGD regions such as Papua New Guinea, the South America west coast, and West Africa. Consequently, our global estimate should be viewed with some caution. Nevertheless, we show that the combined sources of meteoric SGD and brackish SGD coupled with isotope exchange in the STE may constitute a substantial component (~13-30%) of the modern oceanic 87Sr/86Sr budget, likely exceeding less radiogenic Sr inputs by sedimentary diagenesis and hydrothermal circulation through the mid-ocean ridge system. Temporal variation in SGD Sr fluxes and isotope composition may have contributed to fluctuations in the oceanic 87Sr/86Sr ratio over geologic time.
-
ArticleRelationship between water and aragonite barium concentrations in aquaria reared juvenile corals(Elsevier, 2017-04-09) Gonneea, Meagan E. ; Cohen, Anne L. ; DeCarlo, Thomas M. ; Charette, Matthew A.Coral barium to calcium (Ba/Ca) ratios have been used to reconstruct records of upwelling, river and groundwater discharge, and sediment and dust input to the coastal ocean. However, this proxy has not yet been explicitly tested to determine if Ba inclusion in the coral skeleton is directly proportional to seawater Ba concentration and to further determine how additional factors such as temperature and calcification rate control coral Ba/Ca ratios. We measured the inclusion of Ba within aquaria reared juvenile corals (Favia fragum) at three temperatures (∼27.7, 24.6 and 22.5 °C) and three seawater Ba concentrations (73, 230 and 450 nmol kg−1). Coral polyps were settled on tiles conditioned with encrusting coralline algae, which complicated chemical analysis of the coral skeletal material grown during the aquaria experiments. We utilized Sr/Ca ratios of encrusting coralline algae (as low as 3.4 mmol mol−1) to correct coral Ba/Ca for this contamination, which was determined to be 26 ± 11% using a two end member mixing model. Notably, there was a large range in Ba/Ca across all treatments, however, we found that Ba inclusion was linear across the full concentration range. The temperature sensitivity of the distribution coefficient is within the range of previously reported values. Finally, calcification rate, which displayed large variability, was not correlated to the distribution coefficient. The observed temperature dependence predicts a change in coral Ba/Ca ratios of 1.1 μmol mol−1 from 20 to 28 °C for typical coastal ocean Ba concentrations of 50 nmol kg−1. Given the linear uptake of Ba by corals observed in this study, coral proxy records that demonstrate peaks of 10–25 μmol mol−1 would require coastal seawater Ba of between 60 and 145 nmol kg−1. Further validation of the coral Ba/Ca proxy requires evaluation of changes in seawater chemistry associated with the environmental perturbation recorded by the coral as well as verification of these results for Porites species, which are widely used in paleo reconstructions.
-
ArticleUncertainty in United States coastal wetland greenhouse gas inventorying(IOP Science, 2018-11-12) Holmquist, James R. ; Windham-Myers, Lisamarie ; Bernal, Blanca ; Byrd, Kristin B. ; Crooks, Stephen ; Gonneea, Meagan E. ; Herold, Nate ; Knox, Sara H. ; Kroeger, Kevin D. ; McCombs, John ; Megonigal, J. Patrick ; Lu, Meng ; Morris, James T. ; Sutton-Grier, Ariana E. ; Troxler, Tiffany G.Coastal wetlands store carbon dioxide (CO2) and emit CO2 and methane (CH4) making them an important part of greenhouse gas (GHG) inventorying. In the contiguous United States (CONUS), a coastal wetland inventory was recently calculated by combining maps of wetland type and change with soil, biomass, and CH4 flux data from a literature review. We assess uncertainty in this developing carbon monitoring system to quantify confidence in the inventory process itself and to prioritize future research. We provide a value-added analysis by defining types and scales of uncertainty for assumptions, burial and emissions datasets, and wetland maps, simulating 10 000 iterations of a simplified version of the inventory, and performing a sensitivity analysis. Coastal wetlands were likely a source of net-CO2-equivalent (CO2e) emissions from 2006–2011. Although stable estuarine wetlands were likely a CO2e sink, this effect was counteracted by catastrophic soil losses in the Gulf Coast, and CH4 emissions from tidal freshwater wetlands. The direction and magnitude of total CONUS CO2e flux were most sensitive to uncertainty in emissions and burial data, and assumptions about how to calculate the inventory. Critical data uncertainties included CH4 emissions for stable freshwater wetlands and carbon burial rates for all coastal wetlands. Critical assumptions included the average depth of soil affected by erosion events, the method used to convert CH4 fluxes to CO2e, and the fraction of carbon lost to the atmosphere following an erosion event. The inventory was relatively insensitive to mapping uncertainties. Future versions could be improved by collecting additional data, especially the depth affected by loss events, and by better mapping salinity and inundation gradients relevant to key GHG fluxes. Social Media Abstract: US coastal wetlands were a recent and uncertain source of greenhouse gasses because of CH4 and erosion.
-
ArticleDeciphering the dynamics of inorganic carbon export from intertidal salt marshes using high-frequency measurements(Elsevier, 2018-08-25) Chu, Sophie N. ; Wang, Zhaohui Aleck ; Gonneea, Meagan E. ; Kroeger, Kevin D. ; Ganju, Neil K.The lateral export of carbon from coastal marshes via tidal exchange is a key component of the marsh carbon budget and coastal carbon cycles. However, the magnitude of this export has been difficult to accurately quantify due to complex tidal dynamics and seasonal cycling of carbon. In this study, we use in situ, high-frequency measurements of dissolved inorganic carbon (DIC) and water fluxes to estimate lateral DIC fluxes from a U.S. northeastern salt marsh. DIC was measured by a CHANnelized Optical Sensor (CHANOS) that provided an in situ concentration measurement at 15-min intervals, during periods in summer (July – August) and late fall (December). Seasonal changes in the marsh had strong effects on DIC concentrations, while tidally-driven water fluxes were the fundamental vehicle of marsh carbon export. Episodic events, such as groundwater discharge and mean sea water level changes, can impact DIC flux through altered DIC concentrations and water flow. Variability between individual tides within each season was comparable to mean variability between the two seasons. Estimated mean DIC fluxes based on a multiple linear regression (MLR) model of DIC concentrations and high-frequency water fluxes agreed reasonably well with those derived from CHANOS DIC measurements for both study periods, indicating that high-frequency, modeled DIC concentrations, coupled with continuous water flux measurements and a hydrodynamic model, provide a robust estimate of DIC flux. Additionally, an analysis of sampling strategies revealed that DIC fluxes calculated using conventional sampling frequencies (hourly to two-hourly) of a single tidal cycle are unlikely to capture a representative mean DIC flux compared to longer-term measurements across multiple tidal cycles with sampling frequency on the order of tens of minutes. This results from a disproportionately large amount of the net DIC flux occurring over a small number of tidal cycles, while most tides have a near-zero DIC export. Thus, high-frequency measurements (on the order of tens of minutes or better) over the time period of interest are necessary to accurately quantify tidal exports of carbon species from salt marshes.
-
ArticleAccuracy and precision of tidal wetland soil carbon mapping in the conterminous United States(Nature Publishing Group, 2018-06-21) Holmquist, James R. ; Windham-Myers, Lisamarie ; Bliss, Norman B. ; Crooks, Stephen ; Morris, James T. ; Megonigal, J. Patrick ; Troxler, Tiffany G. ; Weller, Donald ; Callaway, John ; Drexler, Judith ; Ferner, Matthew C. ; Gonneea, Meagan E. ; Kroeger, Kevin D. ; Schile-Beers, Lisa ; Woo, Isa ; Buffington, Kevin ; Breithaupt, Joshua ; Boyd, Brandon M. ; Brown, Lauren N. ; Dix, Nicole ; Hice, Lyndie ; Horton, Benjamin P. ; MacDonald, Glen M. ; Moyer, Ryan P. ; Reay, William ; Shaw, Timothy ; Smith, Erik ; Smoak, Joseph M. ; Sommerfield, Christopher K. ; Thorne, Karen ; Velinsky, David ; Watson, Elizabeth ; Wilson Grimes, Kristin ; Woodrey, MarkTidal wetlands produce long-term soil organic carbon (C) stocks. Thus for carbon accounting purposes, we need accurate and precise information on the magnitude and spatial distribution of those stocks. We assembled and analyzed an unprecedented soil core dataset, and tested three strategies for mapping carbon stocks: applying the average value from the synthesis to mapped tidal wetlands, applying models fit using empirical data and applied using soil, vegetation and salinity maps, and relying on independently generated soil carbon maps. Soil carbon stocks were far lower on average and varied less spatially and with depth than stocks calculated from available soils maps. Further, variation in carbon density was not well-predicted based on climate, salinity, vegetation, or soil classes. Instead, the assembled dataset showed that carbon density across the conterminous united states (CONUS) was normally distributed, with a predictable range of observations. We identified the simplest strategy, applying mean carbon density (27.0 kg C m−3), as the best performing strategy, and conservatively estimated that the top meter of CONUS tidal wetland soil contains 0.72 petagrams C. This strategy could provide standardization in CONUS tidal carbon accounting until such a time as modeling and mapping advancements can quantitatively improve accuracy and precision.
-
ArticleClimate-driven sea level anomalies modulate coastal groundwater dynamics and discharge(John Wiley & Sons, 2013-06-03) Gonneea, Meagan E. ; Mulligan, Ann E. ; Charette, Matthew A.To better understand the physical drivers of submarine groundwater discharge (SGD) in the coastal ocean, we conducted a detailed field and modeling study within an unconfined coastal aquifer system. We monitored the hydraulic gradient across the coastal aquifer and movement of the mixing zone over multiple years. At our study site, sea level dominated over groundwater head as the largest contributor to variability in the hydraulic gradient and therefore SGD. Model results indicate the seawater recirculation component of SGD was enhanced during summer while the terrestrial component dominated during winter due to seasonal changes in sea level driven by a combination of long period solar tides, temperature and winds. In one year, sea level remained elevated year round due to a combination of ENSO and NAO climate modes. Hence, predicted changes in regional climate variability driven sea level may impact future rates of SGD and biogeochemical cycling within coastal aquifers.
-
ArticleEnvironmental controls, emergent scaling, and predictions of greenhouse gas (GHG) fluxes in coastal salt marshes(John Wiley & Sons, 2018-07-28) Abdul-Aziz, Omar I. ; Ishtiaq, Khandker S. ; Tang, Jianwu ; Moseman-Valtierra, Serena M. ; Kroeger, Kevin D. ; Gonneea, Meagan E. ; Mora, Jordan ; Morkeski, KateCoastal salt marshes play an important role in mitigating global warming by removing atmospheric carbon at a high rate. We investigated the environmental controls and emergent scaling of major greenhouse gas (GHG) fluxes such as carbon dioxide (CO2) and methane (CH4) in coastal salt marshes by conducting data analytics and empirical modeling. The underlying hypothesis is that the salt marsh GHG fluxes follow emergent scaling relationships with their environmental drivers, leading to parsimonious predictive models. CO2 and CH4 fluxes, photosynthetically active radiation (PAR), air and soil temperatures, well water level, soil moisture, and porewater pH and salinity were measured during May–October 2013 from four marshes in Waquoit Bay and adjacent estuaries, MA, USA. The salt marshes exhibited high CO2 uptake and low CH4 emission, which did not significantly vary with the nitrogen loading gradient (5–126 kg · ha−1 · year−1) among the salt marshes. Soil temperature was the strongest driver of both fluxes, representing 2 and 4–5 times higher influence than PAR and salinity, respectively. Well water level, soil moisture, and pH did not have a predictive control on the GHG fluxes, although both fluxes were significantly higher during high tides than low tides. The results were leveraged to develop emergent power law‐based parsimonious scaling models to accurately predict the salt marsh GHG fluxes from PAR, soil temperature, and salinity (Nash‐Sutcliffe Efficiency = 0.80–0.91). The scaling models are available as a user‐friendly Excel spreadsheet named Coastal Wetland GHG Model to explore scenarios of GHG fluxes in tidal marshes under a changing climate and environment.
-
ArticleIntertidal salt marshes as an important source of inorganic carbon to the coastal ocean(John Wiley & Sons, 2016-07-18) Wang, Zhaohui Aleck ; Kroeger, Kevin D. ; Ganju, Neil K. ; Gonneea, Meagan E. ; Chu, Sophie N.Dynamic tidal export of dissolved inorganic carbon (DIC) to the coastal ocean from highly productive intertidal marshes and its effects on seawater carbonate chemistry are thoroughly evaluated. The study uses a comprehensive approach by combining tidal water sampling of CO2 parameters across seasons, continuous in situ measurements of biogeochemically-relevant parameters and water fluxes, with high-resolution modeling in an intertidal salt marsh of the U.S. northeast region. Salt marshes can acidify and alkalize tidal water by injecting CO2 (DIC) and total alkalinity (TA). DIC and TA generation may also be decoupled due to differential effects of marsh aerobic and anaerobic respiration on DIC and TA. As marsh DIC is added to tidal water, the buffering capacity first decreases to a minimum and then increases quickly. Large additions of marsh DIC can result in higher buffering capacity in ebbing tide than incoming tide. Alkalization of tidal water, which mostly occurs in the summer due to anaerobic respiration, can further modify buffering capacity. Marsh exports of DIC and alkalinity may have complex implications for the future, more acidified ocean. Marsh DIC export exhibits high variability over tidal and seasonal cycles, which is modulated by both marsh DIC generation and by water fluxes. The marsh DIC export of 414 g C m−2 yr−1, based on high-resolution measurements and modeling, is more than twice the previous estimates. It is a major term in the marsh carbon budget and translates to one of the largest carbon fluxes along the U.S. East Coast.
-
ThesisTemporal variability in chemical cycling of the subterranean estuary and associated chemical loading to the coastal ocean(Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 2014-02) Gonneea, Meagan E.At the land-ocean interface, terrestrial groundwater interacts with seawater to form a subterranean estuary, which can play host to dynamic biogeochemical cycling of nutrients, trace metals and radionuclides. This chemically altered groundwater enters the ocean through submarine groundwater discharge (SGD), a process that is driven by a number of physical processes acting on aquifers and the coastal ocean. In this thesis, seasonal variability in chemical cycling and associated loading to the coastal ocean was observed in a monthly time series within the Waquoit Bay (MA, USA) subterranean estuary. The position of the aquifer mixing zone moved seaward with an increase in hydraulic gradient, resulting in low salinity conditions and reduced mixing, while a decrease in gradient led to landward movement, high salinity groundwater and enhanced mixing. At this location, seasonal variability in sea level, not groundwater level, was the dominant variable driving the hydraulic gradient and therefore SGD. Fluxes of sediment bound cations to the ocean increased coincidently with sea level rise due to desorption. There was enhanced nitrogen attenuation during winter, potentially due to longer groundwater residence times, with greater nutrient delivery to coastal waters during the spring and summer bloom. Interannual climate fluctuations that control sea level and precipitation may ultimately control the timing and magnitude of chemical and water flux via SGD. In addition to temporal variability, aquifer lithology influences chemical export. This thesis also demonstrates that SGD from karst subterranean estuaries may play a role in local and global element budgets. The potential for the chemical signature of SGD to be recorded in the coral record was tested through a combination of coral culture experiments and field and modeling studies in the Yucatan Peninsula. Coral barium was well correlated with precipitation for a twelve-year record, with coral geochemistry reflecting the passage of a hurricane in 2002. While additional complexities in deciphering coral records remain, this proxy offers the potential to extend SGD records into the past.