Gorska Natalia

No Thumbnail Available
Last Name
First Name

Search Results

Now showing 1 - 2 of 2
  • Preprint
    On the echo interference in sound backscattering by densely aggregated targets
    ( 2004-12-01) Gorska, Natalia ; Chu, Dezhang
    It is important to understand the volume backscattering by dense aggregations of a variety of scattering objects such as bubbles or biological targets. This paper addresses the interference of the echoes from randomly distributed targets. The main motivation of the paper is to understand the conditions under which the echo interference may affect the accuracy of the abundance and/or the biomass estimation in fisheries and zooplankton acoustics significantly. Our approach consists of two parts. The first includes an analytical approach, which describes explicitly the dependence of the echo interference on the pulse shape of the transmitted signals. Because of the limitations of the analytical approach, numerical computations based on Monte Carlo simulations of acoustic backscattering by three-dimensional target distribution were performed as a second approach. The impacts of the echo interference were studied numerically over a wide range of frequencies, for different pulse shapes and directivity patterns of the acoustic systems, and for various spatial distributions of the targets (abundance), as well as the corresponding target strengths. Using analytical and numerical approaches it was demonstrated that for targets that are uniformly distributed in space, the influence of echo interference on the observed volume-backscattering strength is strongly controlled by three main parameters. These are the number of targets in the sampling volume, the product of sound frequency and pulse duration, and the degree of tapering of the applied pulses. A numerical examples of the abundance estimation of marine organisms are presented.
  • Article
    Comparisons among ten models of acoustic backscattering used in aquatic ecosystem research
    (Acoustical Society of America, 2015-12-21) Jech, J. Michael ; Horne, John K. ; Chu, Dezhang ; Demer, David A. ; Francis, David T. I. ; Gorska, Natalia ; Jones, Benjamin A. ; Lavery, Andone C. ; Stanton, Timothy K. ; Macaulay, Gavin J. ; Reeder, D. Benjamin ; Sawada, Kouichi
    Analytical and numerical scatteringmodels with accompanying digital representations are used increasingly to predict acoustic backscatter by fish and zooplankton in research and ecosystem monitoring applications. Ten such models were applied to targets with simple geometric shapes and parameterized (e.g., size and material properties) to represent biological organisms such as zooplankton and fish, and their predictions of acoustic backscatter were compared to those from exact or approximate analytical models, i.e., benchmarks. These comparisons were made for a sphere, spherical shell, prolate spheroid, and finite cylinder, each with homogeneous composition. For each shape, four target boundary conditions were considered: rigid-fixed, pressure-release, gas-filled, and weakly scattering. Target strength (dB re 1 m2) was calculated as a function of insonifying frequency (f = 12 to 400 kHz) and angle of incidence (θ = 0° to 90°). In general, the numerical models (i.e., boundary- and finite-element) matched the benchmarks over the full range of simulation parameters. While inherent errors associated with the approximate analytical models were illustrated, so were the advantages as they are computationally efficient and in certain cases, outperformed the numerical models under conditions where the numerical models did not converge