Reager
John T.
Reager
John T.
No Thumbnail Available
Search Results
Now showing
1 - 6 of 6
-
ArticleOcean mass, sterodynamic effects, and vertical land motion largely explain US coast relative sea level rise(Nature Research, 2021-11-09) Harvey, Thomas C. ; Hamlington, Benjamin D. ; Frederikse, Thomas ; Nerem, R. Steven ; Piecuch, Christopher G. ; Hammond, William C. ; Blewitt, Geoffrey ; Thompson, Philip R. ; Bekaert, David P. S. ; Landerer, Felix ; Reager, John T. ; Kopp, Robert E. ; Chandanpurkar, Hrishikesh A. ; Fenty, Ian ; Trossman, David S. ; Walker, Jennifer S. ; Boening, CarmenRegional sea-level changes are caused by several physical processes that vary both in space and time. As a result of these processes, large regional departures from the long-term rate of global mean sea-level rise can occur. Identifying and understanding these processes at particular locations is the first step toward generating reliable projections and assisting in improved decision making. Here we quantify to what degree contemporary ocean mass change, sterodynamic effects, and vertical land motion influence sea-level rise observed by tide-gauge locations around the contiguous U.S. from 1993 to 2018. We are able to explain tide gauge-observed relative sea-level trends at 47 of 55 sampled locations. Locations where we cannot explain observed trends are potentially indicative of shortcomings in our coastal sea-level observational network or estimates of uncertainty.
-
ArticleOrigin of interannual variability in global mean sea level(National Academy of Sciences, 2020-06-08) Hamlington, Benjamin D. ; Piecuch, Christopher G. ; Reager, John T. ; Chandanpurkar, Hrishikesh A. ; Frederikse, Thomas ; Nerem, R. Steven ; Fasullo, John T. ; Cheon, Se-HyeonThe two dominant drivers of the global mean sea level (GMSL) variability at interannual timescales are steric changes due to changes in ocean heat content and barystatic changes due to the exchange of water mass between land and ocean. With Gravity Recovery and Climate Experiment (GRACE) satellites and Argo profiling floats, it has been possible to measure the relative steric and barystatic contributions to GMSL since 2004. While efforts to “close the GMSL budget” with satellite altimetry and other observing systems have been largely successful with regards to trends, the short time period covered by these records prohibits a full understanding of the drivers of interannual to decadal variability in GMSL. One particular area of focus is the link between variations in the El Niño−Southern Oscillation (ENSO) and GMSL. Recent literature disagrees on the relative importance of steric and barystatic contributions to interannual to decadal variability in GMSL. Here, we use a multivariate data analysis technique to estimate variability in barystatic and steric contributions to GMSL back to 1982. These independent estimates explain most of the observed interannual variability in satellite altimeter-measured GMSL. Both processes, which are highly correlated with ENSO variations, contribute about equally to observed interannual GMSL variability. A theoretical scaling analysis corroborates the observational results. The improved understanding of the origins of interannual variability in GMSL has important implications for our understanding of long-term trends in sea level, the hydrological cycle, and the planet’s radiation imbalance.
-
ArticleUnderstanding of contemporary regional sea-level change and the implications for the future(American Geophysical Union, 2020-04-17) Hamlington, Benjamin D. ; Gardner, Alex S. ; Ivins, Erik ; Lenaerts, Jan T. M. ; Reager, John T. ; Trossman, David S. ; Zaron, Edward D. ; Adhikari, Surendra ; Arendt, Anthony ; Aschwanden, Andy ; Beckley, Brian D. ; Bekaert, David P. S. ; Blewitt, Geoffrey ; Caron, Lambert ; Chambers, Don P. ; Chandanpurkar, Hrishikesh A. ; Christianson, Knut ; Csatho, Beata ; Cullather, Richard I. ; DeConto, Robert M. ; Fasullo, John T. ; Frederikse, Thomas ; Freymueller, Jeffrey T. ; Gilford, Daniel M. ; Girotto, Manuela ; Hammond, William C. ; Hock, Regine ; Holschuh, Nicholas ; Kopp, Robert E. ; Landerer, Felix ; Larour, Eric ; Menemenlis, Dimitris ; Merrifield, Mark ; Mitrovica, Jerry X. ; Nerem, R. Steven ; Nias, Isabel J. ; Nieves, Veronica ; Nowicki, Sophie ; Pangaluru, Kishore ; Piecuch, Christopher G. ; Ray, Richard D. ; Rounce, David R. ; Schlegel, Nicole‐Jeanne ; Seroussi, Helene ; Shirzaei, Manoochehr ; Sweet, William V. ; Velicogna, Isabella ; Vinogradova, Nadya ; Wahl, Thomas ; Wiese, David N. ; Willis, Michael J.Global sea level provides an important indicator of the state of the warming climate, but changes in regional sea level are most relevant for coastal communities around the world. With improvements to the sea‐level observing system, the knowledge of regional sea‐level change has advanced dramatically in recent years. Satellite measurements coupled with in situ observations have allowed for comprehensive study and improved understanding of the diverse set of drivers that lead to variations in sea level in space and time. Despite the advances, gaps in the understanding of contemporary sea‐level change remain and inhibit the ability to predict how the relevant processes may lead to future change. These gaps arise in part due to the complexity of the linkages between the drivers of sea‐level change. Here we review the individual processes which lead to sea‐level change and then describe how they combine and vary regionally. The intent of the paper is to provide an overview of the current state of understanding of the processes that cause regional sea‐level change and to identify and discuss limitations and uncertainty in our understanding of these processes. Areas where the lack of understanding or gaps in knowledge inhibit the ability to provide the needed information for comprehensive planning efforts are of particular focus. Finally, a goal of this paper is to highlight the role of the expanded sea‐level observation network—particularly as related to satellite observations—in the improved scientific understanding of the contributors to regional sea‐level change.
-
ArticleInfluence of nonseasonal river discharge on sea surface salinity and height(American Geophysical Union, 2022-01-18) Chandanpurkar, Hrishikesh A. ; Lee, Tong ; Wang, Xiaochun ; Zhang, Hong ; Fournier, Séverine ; Fenty, Ian ; Fukumori, Ichiro ; Menemenlis, Dimitris ; Piecuch, Christopher G. ; Reager, John T. ; Wang, Ou ; Worden, JohnRiver discharge influences ocean dynamics and biogeochemistry. Due to the lack of a systematic, up-to-date global measurement network for river discharge, global ocean models typically use seasonal discharge climatology as forcing. This compromises the simulated nonseasonal variation (the deviation from seasonal climatology) of the ocean near river plumes and undermines their usefulness for interdisciplinary research. Recently, a reanalysis-based daily varying global discharge data set was developed, providing the first opportunity to quantify nonseasonal discharge effects on global ocean models. Here we use this data set to force a global ocean model for the 1992–2017 period. We contrast this experiment with another experiment (with identical atmospheric forcings) forced by seasonal climatology from the same discharge data set to isolate nonseasonal discharge effects, focusing on sea surface salinity (SSS) and sea surface height (SSH). Near major river mouths, nonseasonal discharge causes standard deviations in SSS (SSH) of 1.3–3 practical salinity unit (1–2.7 cm). The inclusion of nonseasonal discharge results in notable improvement of model SSS against satellite SSS near most of the tropical-to-midlatitude river mouths and minor improvement of model SSH against satellite or in-situ SSH near some of the river mouths. SSH changes associated with nonseasonal discharge can be explained by salinity effects on halosteric height and estimated accurately through the associated SSS changes. A recent theory predicting river discharge impact on SSH is found to perform reasonably well overall but underestimates the impact on SSH around the global ocean and has limited skill when applied to rivers near the equator and in the Arctic Ocean.
-
ArticleHigh-tide floods and storm surges during atmospheric rivers on the US West Coast(American Geophysical Union, 2022-01-18) Piecuch, Christopher G. ; Coats, Sloan ; Dangendorf, Sönke ; Landerer, Felix ; Reager, John T. ; Thompson, Philip R. ; Wahl, ThomasAtmospheric rivers (ARs) cause inland hydrological impacts related to precipitation. However, little is known about coastal hazards associated with these events. We elucidate high-tide floods (HTFs) and storm surges during ARs on the US West Coast during 1980–2016. HTFs and ARs cooccur more often than expected from chance. Between 10% and 63% of HTFs coincide with ARs on average, depending on location. However, interannual-to-decadal variations in HTFs are due more to tides and mean sea-level changes than storminess variability. Only 2–15% of ARs coincide with HTFs, suggesting that ARs typically must cooccur with high tides or mean sea levels to cause HTFs. Storm surges during ARs reflect local wind, pressure, and precipitation forcing: meridional wind and barometric pressure are primary drivers, but precipitation makes secondary contributions. This study highlights the relevance of ARs to coastal impacts, clarifies the drivers of storm surge during ARs, and identifies future research directions.
-
ArticleThe dominant global modes of recent internal sea level variability(American Geophysical Union, 2019-03-21) Hamlington, Benjamin D. ; Cheon, Se-Hyeon ; Piecuch, Christopher G. ; Karnauskas, Kristopher B. ; Thompson, Philip R. ; Kim, Kwang-Yul ; Reager, John T. ; Landerer, Felix ; Frederikse, ThomasThe advances in the modern sea level observing system have allowed for a new level of knowledge of regional and global sea level in recent years. The combination of data from satellite altimeters, Gravity Recovery and Climate Experiment (GRACE) satellites, and Argo profiling floats has provided a clearer picture of the different contributors to sea level change, leading to an improved understanding of how sea level has changed in the present and, by extension, may change in the future. As the overlap between these records has recently extended past a decade in length, it is worth examining the extent to which internal variability on timescales from intraseasonal to decadal can be separated from long‐term trends that may be expected to continue into the future. To do so, a combined modal decomposition based on cyclostationary empirical orthogonal functions is performed simultaneously on the three data sets, and the dominant shared modes of variability are analyzed. Modes associated with the trend, seasonal signal, El Niño–Southern Oscillation, and Pacific decadal oscillation are extracted and discussed, and the relationship between regional patterns of sea level change and their associated global signature is highlighted.