Yang Jiayan

No Thumbnail Available
Last Name
First Name

Search Results

Now showing 1 - 20 of 46
  • Article
    Potential vorticity constraint on the flow between two basins
    (American Meteorological Society, 2007-09) Yang, Jiayan ; Price, James F.
    This paper examines the role of potential vorticity (PV) balance in source- and sink-driven flows between two basins. As shown in previous studies, PV advection into a basin, say a positive PV advection, requires a negative frictional torque to maintain a steady PV balance. This sense of torque may be provided by a cyclonic boundary current within the basin. The PV advection through a channel is due almost entirely to advection of planetary PV, f/H, where f is the Coriolis parameter and H is the column thickness. Therefore a localized change of depth, and thus H in the channel, directly affects the PV transport and will result in a basinwide change of the circulation pattern. For example, if the channel depth is made shallower while holding the transport fixed, the PV advection is then increased and the result may be a strong recirculation within the basin, as much as two orders of magnitude greater than the transport through the channel. When the basins are connected by two channels at different latitudes or with different sill depths, the throughflow is found to be divided between the two channels in a way that satisfies the integral constraint for flow around an island. The partition of the flow between two channels appears to be such as to minimize the net frictional torque. In still another set of experiments, the large-scale pressure difference (layer thickness) between the basins is specified and held fixed, while the throughflow is allowed to vary in response to changes in the frictional torque. The interbasin transport is strongly influenced by the length of the boundary or the magnitude of the viscosity in the sense that a greater PV frictional torque allows a greater PV transport and vice versa. This result is counterintuitive, if it is assumed that the throughflow is determined by viscous drag within the channel but is a straightforward consequence of the basin-scale PV balance. Thus, the important frictional effect in these experiments is on the basin-scale flow and not on the channel scale.
  • Article
    A mechanism for the latitudinal dependence of peak-spectrum sea surface height variability
    (John Wiley & Sons, 2014-02-25) Lin, Xiaopei ; Yin, Yuqi ; Yang, Jiayan
    Previous studies have shown that the power spectrum of satellite-observed sea surface height (SSH) variability peaks at a certain frequency (or a wave number) band at a given latitude. Lin et al. (2008) attributed this latitudinal dependence to the critical frequency of the first baroclinic mode Rossby waves in the tropical and subtropical oceans. Their study was based on the linear Rossby wave theory and focused on SSH variability in the tropical and subtropical oceans since the altimetry data do not adequately resolve lengths of baroclinic Rossby waves at and near the critical frequency in high latitudes. In this study, we expand their analysis to high-latitude oceanic basins and to include nonlinear eddy effects, by using a linear wave model and a high-resolution model output from the OGCM for the Earth Simulator (OFES). It is found that the linear wave mechanism by and large remains valid in the tropical and subtropical oceans. In higher latitudes as well as in some regions in the western tropical and subtropical oceans, other mechanisms, like nonlinear eddy, play more important role in determining the SSH variability.
  • Article
    Intense abyssal flow through the Yap‐Mariana Junction in the western North Pacific
    (American Geophysical Union, 2022-01-28) Zhou, Chun ; Xu, Hongzhou ; Xiao, Xin ; Zhao, Wei ; Yang, Jiayan ; Yang, Qingxuan ; Jiang, Huichang ; Xie, Qiang ; Long, Tong ; Wang, Tinghao ; Huang, Xiaodong ; Zhang, Zhiwei ; Guan, Shoude ; Tian, Jiwei
    Water-mass transports in the vast and seemingly quiescent abyssal ocean, basically along topographically-guided pathways, play a pivotal role in the Earth's climate. The pulse of abyssal circulations can be taken with observations at topographic choke points. The Yap-Mariana Junction (YMJ) is the exclusive choke point through which the Lower Circumpolar Deep Water (LCDW) enters the Philippine Sea. Here, we quantify the LCDW transport and its variability based on mooring observations at the YMJ and the Mariana Trench (MT). The LCDW flows northward toward the Philippine Sea as an intensified current on the western side of the YMJ, with maximum mean velocity reaching 7.6 cm/s. The mean LCDW transports through the MT and the YMJ are 2.2 ± 1.0 Sv and 2.1 ± 0.4 Sv, respectively. Reversal flow at autumn in both the YMJ and MT is captured, indicating seasonal variability of the abyssal flow.
  • Article
    An oceanic current against the wind : how does Taiwan island steer warm water into the East China Sea?
    (American Meteorological Society, 2007-10) Yang, Jiayan
    Along the Taiwan Strait (<100 m in depth) a northeastward flow persists in all seasons despite the annually averaged wind stress that is strongly southwestward. The forcing mechanism of this countercurrent is examined by using a simple ocean model. The results from a suite of experiments demonstrate that it is the Kuroshio that plays the deciding role for setting the flow direction along the Taiwan Strait. The momentum balance along the strait is mainly between the wind stress, friction, and pressure gradient. Since both wind stress and friction act against the northward flow, it is most likely the pressure gradient that forces the northward flow, as noted in some previous studies. What remains unknown is why there is a considerable pressure difference between the southern and northern strait. The Kuroshio flows along the east coast of Taiwan, and thus the western boundary current layer dynamics applies there. Integrating the momentum equation along Taiwan’s east coast shows that there must be a pressure difference between the southern and the northern tip of Taiwan to counter a considerable friction exerted by the mighty Kuroshio. This same pressure difference is also felt on the other side of the island where it forces the northward flow through Taiwan Strait. The model shows that the local wind stress acts to dampen this northward flow. This mechanism can be illustrated by an integral constraint for flow around an island.
  • Article
    The role of wind stress in driving the along-shelf flow in the Northwest Atlantic Ocean
    (American Geophysical Union, 2021-03-30) Yang, Jiayan ; Chen, Ke
    The along-shelf circulation in the Northwest Atlantic (NWA) Ocean is characterized by an equatorward flow from Greenland's south coast to Cape Hatters. The mean flow is considered to be primarily forced by freshwater discharges from rivers and glaciers while its variability is driven by both freshwater fluxes and wind stress. In this study, we hypothesize and test that the wind stress is important for the mean along-shelf flow. A two-layer model with realistic topography when forced by wind stress alone simulates a circulation system on the NWA shelves that is broadly consistent with that derived from observations, including an equatorward flow from Greenland coast to the Mid-Atlantic Bight (MAB). The along-shelf sea-level gradient is close to a previous estimate based on observations. The along-shelf flows exhibit strong seasonal variations with along-shelf transports being strong in fall/winter and weak in spring/summer, consistent with available observations. It is found that the NWA shelf circulation is affected by both wind-driven gyres through their western boundary currents and wind-stress forcing on the shelf especially along the coasts of Newfoundland and Labrador. The local wind stress forcing has more direct impacts on flows in shallower waters along the coast while the open-ocean gyres tend to affect the circulations along the outer shelf. Our conclusion is that wind stress is an important forcing of the main along-shelf flows in the NWA. One objective of this study is to motivate further examination of whether wind stress is as important as freshwater forcing for the mean flow.
  • Article
    How is New England coastal sea level related to the Atlantic meridional overturning circulation at 26 degrees N?
    (American Geophysical Union, 2019-05-01) Piecuch, Christopher G. ; Dangendorf, Sönke ; Gawarkiewicz, Glen G. ; Little, Christopher M. ; Ponte, Rui M. ; Yang, Jiayan
    Monthly observations are used to study the relationship between the Atlantic meridional overturning circulation (AMOC) at 26° N and sea level (ζ) on the New England coast (northeastern United States) over nonseasonal timescales during 2004–2017. Variability in ζ is anticorrelated with AMOC on intraseasonal and interannual timescales. This anticorrelation reflects the stronger underlying antiphase relationship between ageostrophic Ekman‐related AMOC transports due to local zonal winds across 26° N and ζ changes arising from local wind and pressure forcing along the coast. These distinct local atmospheric variations across 26° N and along coastal New England are temporally correlated with one another on account of large‐scale atmospheric teleconnection patterns. Geostrophic AMOC contributions from the Gulf Stream through the Florida Straits and upper‐mid‐ocean transport across the basin are together uncorrelated with ζ. This interpretation contrasts with past studies that understood ζ and AMOC as being in geostrophic balance with one another.
  • Article
    An asymmetric upwind flow, Yellow Sea Warm Current : 1. New observations in the western Yellow Sea
    (American Geophysical Union, 2011-04-29) Lin, Xiaopei ; Yang, Jiayan ; Guo, Jingsong ; Zhang, Zhixin ; Yin, Yuqi ; Song, Xiangzhou ; Zhang, Xiaohui
    The winter water mass along the Yellow Sea Trough (YST), especially on the western side of the trough, is considerably warmer and saltier than the ambient shelf water mass. This observed tongue-shape hydrographic feature implies the existence of a winter along-trough and onshore current, often referred to as the Yellow Sea Warm Current (YSWC). However, the YSWC has not been confirmed by direct current measurements and therefore skepticism remains regarding its existence. Some studies suggest that the presence of the warm water could be due to frontal instability, eddies, or synoptic scale wind bursts. It is noted that in situ observations used in most previous studies were from the central and eastern sides of the YST even though it is known that the warm water core is more pronounced along the western side. Data from the western side have been scarce. Here we present a set of newly available Chinese observations, including some from a coordinated effort involving three Chinese vessels in the western YST during the 2006–2007 winter. The data show unambiguously the existence of the warm current on the western side of YST. Both the current and hydrography observations indicate a dominant barotropic structure of YSWC. The westward deviation of YSWC axis is particularly obvious to the south of 35°N and is clearly associated with an onshore movement of warm water. To the north of 35°N, the YSWC flows along the bathymetry with slightly downslope movement. We conclude that the barotropic current is mainly responsible for the warm water intrusion, while the Ekman and baroclinic currents play an important but secondary role. These observations help fill an observational gap and establish a more complete view of the YSWC.
  • Article
    On the effective capacity of the dense-water reservoir for the Nordic Seas overflow : some effects of topography and wind stress
    (American Meteorological Society, 2013-02) Yang, Jiayan ; Pratt, Lawrence J.
    The overflow of the dense water mass across the Greenland–Scotland Ridge (GSR) from the Nordic Seas drives the Atlantic meridional overturning circulation (AMOC). The Nordic Seas is a large basin with an enormous reservoir capacity. The volume of the dense water above the GSR sill depth in the Nordic Seas, according to previous estimates, is sufficient to supply decades of overflow transport. This large capacity buffers overflow’s responses to atmospheric variations and prevents an abrupt shutdown of the AMOC. In this study, the authors use a numerical and an analytical model to show that the effective reservoir capacity of the Nordic Seas is actually much smaller than what was estimated previously. Basin-scale oceanic circulation is nearly geostrophic and its streamlines are basically the same as the isobaths. The vast majority of the dense water is stored inside closed geostrophic contours in the deep basin and thus is not freely available to the overflow. The positive wind stress curl in the Nordic Seas forces a convergence of the dense water toward the deep basin and makes the interior water even more removed from the overflow-feeding boundary current. Eddies generated by the baroclinic instability help transport the interior water mass to the boundary current. But in absence of a robust renewal of deep water, the boundary current weakens rapidly and the eddy-generating mechanism becomes less effective. This study indicates that the Nordic Seas has a relatively small capacity as a dense water reservoir and thus the overflow transport is sensitive to climate changes.
  • Article
    Author correction : Meridional heat transport variability induced by mesoscale processes in the subpolar North Atlantic
    (Nature Publishing Group, 2018-06-14) Zhao, Jian ; Bower, Amy S. ; Yang, Jiayan ; Lin, Xiaopei
  • Article
    Overturning in the Subpolar North Atlantic Program : a new international ocean observing system
    (American Meteorological Society, 2017-04-24) Lozier, M. Susan ; Bacon, Sheldon ; Bower, Amy S. ; Cunningham, Stuart A. ; de Jong, Marieke Femke ; de Steur, Laura ; deYoung, Brad ; Fischer, Jürgen ; Gary, Stefan F. ; Greenan, Blair J. W. ; Heimbach, Patrick ; Holliday, Naomi Penny ; Houpert, Loïc ; Inall, Mark E. ; Johns, William E. ; Johnson, Helen L. ; Karstensen, Johannes ; Li, Feili ; Lin, Xiaopei ; Mackay, Neill ; Marshall, David P. ; Mercier, Herlé ; Myers, Paul G. ; Pickart, Robert S. ; Pillar, Helen R. ; Straneo, Fiamma ; Thierry, Virginie ; Weller, Robert A. ; Williams, Richard G. ; Wilson, Christopher G. ; Yang, Jiayan ; Zhao, Jian ; Zika, Jan D.
    For decades oceanographers have understood the Atlantic meridional overturning circulation (AMOC) to be primarily driven by changes in the production of deep-water formation in the subpolar and subarctic North Atlantic. Indeed, current Intergovernmental Panel on Climate Change (IPCC) projections of an AMOC slowdown in the twenty-first century based on climate models are attributed to the inhibition of deep convection in the North Atlantic. However, observational evidence for this linkage has been elusive: there has been no clear demonstration of AMOC variability in response to changes in deep-water formation. The motivation for understanding this linkage is compelling, since the overturning circulation has been shown to sequester heat and anthropogenic carbon in the deep ocean. Furthermore, AMOC variability is expected to impact this sequestration as well as have consequences for regional and global climates through its effect on the poleward transport of warm water. Motivated by the need for a mechanistic understanding of the AMOC, an international community has assembled an observing system, Overturning in the Subpolar North Atlantic Program (OSNAP), to provide a continuous record of the transbasin fluxes of heat, mass, and freshwater, and to link that record to convective activity and water mass transformation at high latitudes. OSNAP, in conjunction with the Rapid Climate Change–Meridional Overturning Circulation and Heatflux Array (RAPID–MOCHA) at 26°N and other observational elements, will provide a comprehensive measure of the three-dimensional AMOC and an understanding of what drives its variability. The OSNAP observing system was fully deployed in the summer of 2014, and the first OSNAP data products are expected in the fall of 2017.
  • Article
    The Arctic and subarctic Ocean flux of potential vorticity and the Arctic Ocean circulation
    (American Meteorological Society, 2005-12) Yang, Jiayan
    According to observations, the Arctic Ocean circulation beneath a shallow thermocline can be schematized by cyclonic rim currents along shelves and over ridges. In each deep basin, the circulation is also believed to be cyclonic. This circulation pattern has been used as an important benchmark for validating Arctic Ocean models. However, modeling this grand circulation pattern with some of the most sophisticated ocean–ice models has been often difficult. The most puzzling and thus perhaps the most interesting finding from the Arctic Ocean Model Intercomparison Project (AOMIP), an international consortium that runs 14 Arctic Ocean models by using the identical forcing fields, is that its model results can be grouped into two nearly exact opposite patterns. While some models produce cyclonic circulation patterns similar to observations, others do the opposite. This study examines what could be possibly responsible for such strange inconsistency. It is found here that the flux of potential vorticity (PV) from the subarctic oceans strongly controls the circulation directions. For a semienclosed basin like the Arctic, the PV integral over the whole basin yields a balance between the net lateral PV inflow and the PV dissipation along the boundary. When an isopycnal layer receives a net positive PV through inflow/outflow, the circulation becomes cyclonic so that friction can generate a flux of negative PV to satisfy the integral balance. For simplicity, a barotropic ocean model is used in this paper but its application to the 3D models will be discussed. In the first set of experiments, the model with a realistic Arctic bathymetry is forced by observed inflows and outflows. In this case, there is a net positive PV inflow to the basin, due to the fact that inflow layer is thinner than that of outflow. The model produces a circulation field that is remarkably similar to the one from observations. In the second experiment, the model bathymetry at Fram Strait is modified so that the same inflows and outflows of water masses lead to a net negative PV flux into the Arctic. The circulation is reversed and becomes nearly the opposite of the first experiment. In the third experiment, the net PV flux is made to be zero by modifying again the sill depth at Fram Strait. The circulation becomes two gyres, a cyclonic one in the Eurasian Basin and an anticyclonic one in the Canada Basin. To elucidate the control of the PV integral, a second set of model experiments is conducted by using an idealized Arctic bathymetry so that the PV dynamics can be better explained without the complication of rough topography. The results from five additional experiments that used the idealized topography will be discussed. While the model used in this study is one layer, the same PV-integral constraint can be applied to any isopycnal layer in a three-dimensional model. Variables that affect the PV fluxes to this density layer at any inflow/outflow channel, such as layer thickness and water volume flux, can affect the circulation pattern. The relevance to 3D models is discussed in this paper.
  • Article
    Mesoscale and submesoscale shelf-ocean exchanges initialize an advective marine heatwave
    (American Geophysical Union, 2021-12-08) Chen, Ke ; Gawarkiewicz, Glen G. ; Yang, Jiayan
    Observations and high-resolution numerical modeling are used to investigate the dynamical processes related to the initiation of an advective Marine Heatwave in the Middle Atlantic Bight of the Northwest Atlantic continental shelf. Both the observations and the model identify two significant cross-shelf intrusions in November 2016 and January 2017, with the latter inducing large-magnitude water mass anomalies across the shelf. Model prognostic fields reveal the importance of the combination of cyclonic eddies or ringlets and upwelling-favorable winds in producing the large-distance cross-shelf penetration and temperature/salinity anomalies. The cyclonic eddies in close proximity to the shelfbreak set up local along-isobath pressure gradients and provide favorable conditions for the intensification of the shelfbreak front, both processes driving cross-isobath intrusions of warm, salty offshore water onto the outer continental shelf. Subsequently, strong and persistent upwelling-favorable winds drive a rapid, bottom intensified cross-shelf penetration in January 2017 composed of the anomalous water mass off the shelfbreak. The along-shelf settings including realistic representation of bathymetric features are essential in the characteristics of the cross-shelf penetration. The results highlight the importance of smaller scale cyclonic eddies and the intricacy of the interplay between multiple processes to drive significant cross-shelf events.
  • Article
    Local and remote wind stress forcing of the seasonal variability of the Atlantic Meridional Overturning Circulation (AMOC) transport at 26.5°N
    (John Wiley & Sons, 2015-04-02) Yang, Jiayan
    The transport of the Atlantic Meridional Overturning Circulation (AMOC) varies considerably on the seasonal time scale at 26.5°N, according to observations made at the RAPID-MOCHA array. Previous studies indicate that the local wind stress at 26.5°N, especially a large wind stress curl at the African coast, is the leading contributor to this seasonal variability. The purpose of the present study is to examine whether nonlocal wind stress forcing, i.e., remote forcing from latitudes away from 26.5°N, affects the seasonal AMOC variability at the RAPID-MOCHA array. Our tool is a two-layer and wind-driven model with a realistic topography and an observation-derived wind stress. The seasonal cycle of the modeled AMOC transport agrees well with RAPID-MOCHA observations while the amplitude is in the lower end of the observational range. In contrast to previous studies, the seasonal AMOC variability at 26.5°N is not primarily forced by the wind stress curl at the eastern boundary, but is a result of a basin-wide adjustment of ocean circulation to seasonal changes in wind stress. Both the amplitude and phase of the seasonal cycle at 26.5°N are strongly influenced by wind stress forcing from other latitudes, especially from the subpolar North Atlantic. The seasonal variability of the AMOC transport at 26.5°N is due to the seasonal redistribution of the water mass volume and is driven by both local and remote wind stress. Barotropic processes make significant contributions to the seasonal AMOC variability through topography-gyre interactions.
  • Article
    Explaining the global distribution of peak-spectrum variability of sea surface height
    (American Geophysical Union, 2008-07-19) Lin, Xiaopei ; Yang, Jiayan ; Wu, Dexing ; Zhai, Ping
    A 14-year satellite observation of sea surface height (SSH) reveals an interesting pattern. Along any latitude, there is a frequency at which the SSH power spectrum peaks, regardless of which hemisphere or oceanic basin. This peak-spectrum frequency is nearly identical to the critical frequency at which the zonal energy propagation of Rossby waves becomes stagnant. The interior ocean adjusts to atmospheric forcing by radiating energy away through Rossby waves. There are two distinct groups of Rossby waves, long ones carry the energy to the west while short ones send the energy to the east. At the critical frequency, these two waves merge and their zonal energy propagation becomes stagnant. Consequently, the energy from atmospheric forcing may accumulate in the ocean interior, and thus result in a spectrum peak.
  • Article
    Cross-equatorial anti-symmetry in the seasonal transport of the western boundary current in the Atlantic Ocean
    (American Geophysical Union, 2021-04-23) Zhai, Yujia ; Yang, Jiayan ; Wan, Xiuquan
    The western boundary current in the equatorial Atlantic Ocean is a main conduit for water-mass exchanges across the equator and thus a major pathway for the interhemispheric transports in the Atlantic Meridional Overturning Circulation (AMOC) system. In this study we quantify and examine the mean and seasonal variability of the equatorial western boundary current (EWBC) in the upper ocean layer using two data-assimilated products, the Estimating the Circulation and Climate of the Ocean (ECCO4r3) and the Simple Ocean Data Assimilation (SODA3). It is found that the EWBC between 10°S and 10°N exhibits two pronounced features in its seasonal variability: (1) the transport varies anti-symmetrically across the equator, that is, the northward EWBC strengthens to the north of the equator when it weakens to the south of the equator, and vice versa; and (2) the amplitude of seasonal variations is much greater in the northern hemisphere than in the south. We hypothesize that the cross-equatorial anti-symmetry in EWBC transport variability is attributable to the impingement of equatorial Rossby waves at the western boundary and the shape of the western boundary is the main cause for the amplified seasonal variability in the northern hemisphere. A simple 1 and 1/2-layer model is used to test and validate this hypothesis and to elucidate the role of wind forcing and topography plays in the seasonal variability in the EWBC transport.
  • Article
    An asymmetric upwind flow, Yellow Sea Warm Current : 2. Arrested topographic waves in response to the northwesterly wind
    (American Geophysical Union, 2011-04-29) Lin, Xiaopei ; Yang, Jiayan
    A warm and salty water mass exists along the Yellow Sea Trough (YST) in winter. This oceanic water mass is distinct from the ambient shelf water and is distributed on the western side of the YST. It has long been reasoned that a Yellow Sea Warm Current (YSWC) must exist. A recent observational study indeed supports the existence of the YSWC and shows that its position moved progressively westward as the warm water intrudes further shoreward toward the northwest. In this paper, we explain mechanisms for sustaining the YSWC and for its westward displacement. The northwesterly monsoonal wind prevails in the winter and is directed against the YSWC. The cross-trough scale is small compared with the spatial scale of monsoonal variation, so one can assume, to the first order, that the wind stress is uniform across the trough. The curl of depth-averaged wind stress has opposite signs on the two sides of the trough. Consequently, two oppositely rotating gyres develop initially and they converge along the trough giving rise to a barotropic upwind flow. But this upwind flow lasts only for a few days as the two gyres evolve and propagate as topographic waves. For a northerly wind, both gyres move westward since the positive (negative) potential vorticity flux on the western (eastern) side of the trough pushes the water toward shore (trough). If the bottom friction is negligible, the steady response becomes a large anticyclonic gyre over the trough and the upwind current is squeezed toward the shore line. In this case, no YSWC is sustained along or near the trough. This runaway warm current can be arrested by a moderate bottom friction. We therefore propose that the YSWC is actually arrested topographic waves in response to local wind stress forcing.
  • Article
    Local and equatorial forcing of seasonal variations of the North Equatorial Countercurrent in the Atlantic Ocean
    (American Meteorological Society, 2006-02) Yang, Jiayan ; Joyce, Terrence M.
    The seasonal variation of the North Equatorial Countercurrent (NECC) in the tropical Atlantic Ocean is investigated by using a linear, one-layer reduced-gravity ocean model and by analyzing sea surface height (SSH) data from Ocean Topography Experiment (TOPEX)/Poseidon (T/P) altimeters. The T/P data indicate that the seasonal variability of the NECC geostrophic transport, between 3° and 10°N, is dominated by SSH changes in the southern flank of the current. Since the southern boundary of the NECC is located partially within the equatorial waveguide, the SSH variation there can be influenced considerably by the equatorial dynamics. Therefore, it is hypothesized that the wind stress forcing along the equator is the leading driver for the seasonal cycle of the NECC transport. The wind stress curl in the NECC region is an important but smaller contributor. This hypothesis is tested by several sensitivity experiments that are designed to separate the two forcing mechanisms. In the first sensitivity run, a wind stress field that has a zero curl is used to force the ocean model. The result shows that the NECC geostrophic transport retains most of its seasonal variability. The same happens in another experiment in which the seasonal wind stress is applied only within a narrow band along the equator outside the NECC range. To further demonstrate the role of equatorial waves, another experiment was run in which the wind stress in the Southern Hemisphere is altered so that the model excludes hemispherically symmetrical waves (Kelvin waves and odd-numbered meridional modes of equatorial Rossby waves) and instead excites only the antisymmetrical equatorial Rossby modes. The circulation in the northern tropical ocean, including the NECC, is affected considerably even though the local wind stress there remains unchanged. All these appear to support the hypothesis presented in this paper.
  • Article
    Increasing inhomogeneity of the global ocean
    (American Geophysical Union, 2022-06-23) Ren, Qiuping ; Kwon, Young-Oh ; Yang, Jiayan ; Huang, Rui Xin ; Li, Yuanlong ; Wang, Fan
    The ocean is inhomogeneous in hydrographic properties with diverse water masses. Yet, how this inhomogeneity has evolved in a rapidly changing climate has not been investigated. Using multiple observational and reanalysis datasets, we show that the spatial standard deviation (SSD) of the global ocean has increased by 1.4 ± 0.1% in temperature and 1.5 ± 0.1% in salinity since 1960. A newly defined thermohaline inhomogeneity index, a holistic measure of both temperature and salinity changes, has increased by 2.4 ± 0.1%. Climate model simulations suggest that the observed ocean inhomogeneity increase is dominated by anthropogenic forcing and projected to accelerate by 200%–300% during 2015–2100. Geographically, the rapid upper-ocean warming at mid-to-low latitudes dominates the temperature inhomogeneity increase, while the increasing salinity inhomogeneity is mainly due to the amplified salinity contrast between the subtropical and subpolar latitudes.
  • Article
    Improving oceanic overflow representation in climate models : the Gravity Current Entrainment Climate Process Team
    (American Meteorological Society, 2009-05) Legg, Sonya ; Ezer, Tal ; Jackson, Laura ; Briegleb, Bruce P. ; Danabasoglu, Gokhan ; Large, William G. ; Wu, Wanli ; Chang, Yeon ; Ozgokmen, Tamay M. ; Peters, Hartmut ; Xu, Xiaobiao ; Chassignet, Eric P. ; Gordon, Arnold L. ; Griffies, Stephen M. ; Hallberg, Robert ; Price, James F. ; Riemenschneider, Ulrike ; Yang, Jiayan
    Oceanic overflows are bottom-trapped density currents originating in semienclosed basins, such as the Nordic seas, or on continental shelves, such as the Antarctic shelf. Overflows are the source of most of the abyssal waters, and therefore play an important role in the large-scale ocean circulation, forming a component of the sinking branch of the thermohaline circulation. As they descend the continental slope, overflows mix vigorously with the surrounding oceanic waters, changing their density and transport significantly. These mixing processes occur on spatial scales well below the resolution of ocean climate models, with the result that deep waters and deep western boundary currents are simulated poorly. The Gravity Current Entrainment Climate Process Team was established by the U.S. Climate Variability and Prediction (CLIVAR) Program to accelerate the development and implementation of improved representations of overflows within large-scale climate models, bringing together climate model developers with those conducting observational, numerical, and laboratory process studies of overflows. Here, the organization of the Climate Process Team is described, and a few of the successes and lessons learned during this collaboration are highlighted, with some emphasis on the well-observed Mediterranean overflow. The Climate Process Team has developed several different overflow parameterizations, which are examined in a hierarchy of ocean models, from comparatively well-resolved regional models to the largest-scale global climate models.
  • Article
    On the dynamics of the seasonal variation in the South China Sea throughflow transport
    (John Wiley & Sons, 2013-12-16) Yang, Jiayan ; Lin, Xiaopei ; Wu, Dexing
    The Luzon Strait transport (LST) of water mass from the Pacific Ocean to the South China Sea (SCS) varies significantly with seasons. The mechanisms for this large variability are still not well understood. The steady-state island rule, which is derived from a steady-state model, is not applicable to seasonal time scale variations in a large basin like the Pacific Ocean. In this paper, we will use a theoretical model that is based on the circulation integral around the Philippines. The model relates the LST variability to changes in the boundary currents along the east coast of the Philippines, including the North Equatorial Current (NEC) Bifurcation Latitude (NECBL), the transports of Kuroshio and Mindanao Currents (KC and MC), and to the local wind-stress forcing. Our result shows that a northward shift of the NECBL, a weakening of the KC or a strengthening of the MC would enhance the LST into the SCS. This relationship between the LST and the NEC-KC-MC is consistent with observations. The analytical result is tested by a set of idealized numerical simulations.