Hayn
Melanie
Hayn
Melanie
No Thumbnail Available
Search Results
Now showing
1 - 5 of 5
-
ArticleVariation in sediment and seagrass characteristics reflect multiple stressors along a nitrogen-enrichment gradient in a New England lagoon(Association for the Sciences of Limnology and Oceanography, 2022-01-28) Haviland, Katherine Ann ; Howarth, Robert W. ; Marino, Roxanne ; Hayn, MelanieWe examined concentrations of organic carbon, dissolved sulfides, total sediment sulfur, and stable sulfur isotope ratios in seagrass leaf tissues across a nitrogen-enrichment gradient in a coastal marine ecosystem (Cape Cod, Massachusetts) in 2007–2010 and 2017–2019. We also measured seagrass aboveground and belowground biomass, epibiota biomass, and leaf chlorophyll content. Seagrasses were present at all sites in the former period but were lost at our most nitrogen-impacted site (Snug Harbor) by 2011. In 2007–2010, sediment organic carbon and dissolved sulfides were highest in Snug Harbor and decreased along the gradient; leaf tissues depleted in 34S also indicated higher sulfide intrusion into seagrass tissues in more eutrophic areas. By 2017–2019, sediment organic carbon and pore-water soluble sulfides had decreased in Snug Harbor, but had increased at the intermediate site, to levels found at the most impacted site prior to the seagrass die-off. Again, leaf tissue 34S depletion reflected this pattern, indicating seagrasses were exposed to the highest sulfides at the intermediate site. The decreases in sediment organic carbon and soluble sulfides in Snug Harbor years after the loss of the seagrasses illustrate a feedback between high organic matter in seagrass beds and increasing stressors like elevated soluble sulfides in nutrient-enriched systems. We found significant relationships between sediment conditions and seagrass responses, including greater aboveground to belowground biomass ratios, epibiota biomass, and 34S-depleted leaves at sites with high pore-water sulfide and highly organic sediments. Our research suggests that the reduction of anthropogenic nitrogen entering the harbor is necessary for improving sediment quality and preventing seagrass mortality.
-
ArticleTidal and groundwater fluxes to a shallow, microtidal estuary : constraining inputs through field observations and hydrodynamic modeling(Springer, 2012-05-30) Ganju, Neil K. ; Hayn, Melanie ; Chen, Shih-Nan ; Howarth, Robert W. ; Dickhudt, Patrick J. ; Aretxabaleta, Alfredo L. ; Marino, RoxanneIncreased nutrient loading to estuaries has led to eutrophication, degraded water quality, and ecological transformations. Quantifying nutrient loads in systems with significant groundwater input can be difficult due to the challenge of measuring groundwater fluxes. We quantified tidal and freshwater fluxes over an 8-week period at the entrance of West Falmouth Harbor, Massachusetts, a eutrophic, groundwater-fed estuary. Fluxes were estimated from velocity and salinity measurements and a total exchange flow (TEF) methodology. Intermittent cross-sectional measurements of velocity and salinity were used to convert point measurements to cross-sectionally averaged values over the entire deployment (index relationships). The estimated mean freshwater flux (0.19 m3/s) for the 8-week period was mainly due to groundwater input (0.21 m3/s) with contributions from precipitation to the estuary surface (0.026 m3/s) and removal by evaporation (0.048 m3/s). Spring–neap variations in freshwater export that appeared in shorter-term averages were mostly artifacts of the index relationships. Hydrodynamic modeling with steady groundwater input demonstrated that while the TEF methodology resolves the freshwater flux signal, calibration of the index– salinity relationships during spring tide conditions only was responsible for most of the spring–neap signal. The mean freshwater flux over the entire period estimated from the combination of the index-velocity, index–salinity, and TEF calculations were consistent with the model, suggesting that this methodology is a reliable way of estimating freshwater fluxes in the estuary over timescales greater than the spring– neap cycle. Combining this type of field campaign with hydrodynamic modeling provides guidance for estimating both magnitude of groundwater input and estuarine storage of freshwater and sets the stage for robust estimation of the nutrient load in groundwater.
-
ArticleRole of external inputs of nutrients to aquatic ecosystems in determining prevalence of nitrogen vs. phosphorus limitation of net primary productivity(Springer, 2021-02-17) Howarth, Robert W. ; Chan, Francis ; Swaney, Dennis P. ; Marino, Roxanne ; Hayn, MelanieWhether net primary productivity in an aquatic ecosystem is limited by nitrogen (N), limited by phosphorus (P), or co-limited by N & P is determined by the relative supply of N and P to phytoplankton compared to their elemental requirements for primary production, often characterized by the “Redfield” ratio. The supply of these essential nutrients is affected by both external inputs and biogeochemical processes within the ecosystem. In this paper, we examine external sources of nutrients to aquatic systems and how the balance of N to P inputs influences nutrient limitation. For ocean subtropical gyres, a relatively balanced input of N and P relative to the Redfield ratio from deep ocean sources often leads to near co-limitation by N and P. For lakes, the external nutrient inputs come largely from watershed sources, and we demonstrate that on average the N:P ratio for these inputs across the United States is well above that needed by phytoplankton, which may contribute to P limitation in those lake that experience this average nutrient loading. Watershed inputs are also important for estuaries and coastal marine ecosystems, but ocean sources of nutrients are also significant contributors to overall nutrient loads. The ocean-nutrient sources of N and P are very often at or below the Redfield ratio of 16:1 molar, and can be substantially so, particularly in areas where the continental shelf is wide. This large input of coastal ocean nutrients with a low N:P ratio is one factor that may make N limitation more likely in many coastal marine ecosystems than in lakes.
-
ArticleNitrogen fixation associated with epiphytes on the seagrass Zostera marina in a temperate lagoon with moderate to high nitrogen loads(Springer, 2023-10-09) Marino, Roxanne ; Hayn, Melanie ; Howarth, Robert W. ; Giblin, Anne E. ; McGlathery, Karen J. ; Berg, PeterAs part of a long-term study on the effects of nitrogen (N) loading in a shallow temperate lagoon, we measured rates of N2 fixation associated with seagrass (Zostera marina) epiphytes during the summer from 2005 to 2019, at two sites along a gradient from where high N groundwater enters the system (denoted SH) to a more well-flushed outer harbor (OH). The data presented here are the first such long-term N2 fixation estimates for any seagrass system and one of the very few reported for the phyllosphere in a temperate system. Mean daily N2 fixation was estimated from light and dark measurements using the acetylene reduction assay intercalibrated using both incorporation of 15N2 into biomass and a novel application of the N2:Ar method. Surprisingly, despite a large inorganic N input from a N-contaminated groundwater plume, epiphytic N2 fixation rates were moderately to very high for a seagrass system (OH site 14-year mean of 0.94 mmol N m−2 d−1), with the highest rates (2.6 mmol N m−2 d−1) measured at the more N-loaded eutrophic site (SH) where dissolved inorganic N was higher and soluble reactive phosphorus was lower than in the better-flushed OH. Over 95% of the total N2 fixation measured was in the light, suggesting the importance of cyanobacteria in the epiphyte assemblages. We observed large inter-annual variation both within and across the two study sites (range from 0.1 to 2.6 mmol N fixed m−2 d−1), which we suggest is in part related to climatic variation. We estimate that input from phyllosphere N2 fixation over the study period contributes on average an additional 20% to the total daily N load per area within the seagrass meadow.
-
ArticleCharacterizing spatial and temporal trends in net sediment accumulation in seagrass meadows(Springer, 2024-05-18) Haviland, Katherine Ann ; Howarth, Robert W. ; Hayn, Melanie ; Giblin, Anne E.Seagrass meadows are known as hot spots for carbon accumulation, but there is limited field data on the variability of sediment accumulation across time and space. We developed a method to assess spatial and temporal heterogeneity in net sediment accumulation in seagrass meadows using small, inexpensive samplers, allowing for over 200 unique measurements across multiple transects within our study site. Using this method, we assessed sediment accumulation across seagrass meadow edges, and in varying weather conditions. We found the greatest accumulation of sediment 5 m outside of seagrass meadow edges, with sediment accumulation rates averaging just under 100 g m−2 day−1, though rates were highly variable. Carbon accumulation from settled sediment was generally greater outside of seagrass meadow edges than within the bed, especially at sites undergoing recent expansion. Measurements made during tropical storms showed both scouring of sediment away from sites, and increased accumulation, depending on site properties as well as individual tropical storm characteristics. In the storm that had a measurable storm surge, scouring of sediment was a more dominant mechanism, whereas deposition dominated in the storm that had high winds but no associated storm surge. Our data demonstrate the necessity of including measurements that characterize both spatial and meteorological variability to develop a more holistic understanding of the movement of sediment and particulate organic carbon associated with seagrass meadows, especially as meadow area becomes increasingly fragmented with human activity and global change.