Kucharski
Fred
Kucharski
Fred
No Thumbnail Available
Search Results
Now showing
1 - 2 of 2
-
PreprintA recipe for simulating the interannual variability of the Asian summer monsoon and its relation with ENSO( 2006-08-21) Bracco, Annalisa ; Kucharski, Fred ; Molteni, Franco ; Hazeleger, Wilco ; Severijns, CamielThis study investigates how accurately the interannual variability over the Indian Ocean basin and the relationship between the Indian summer monsoon and the El Nino Southern Oscillation (ENSO) can be simulated by different modelling strategies. With a hierarchy of models, from an atmospherical general circulation model (AGCM) forced by observed SST, to a coupled model with the ocean component limited to the tropical Pacific and Indian Oceans, the role of heat fluxes and of interactive coupling is analyzed. Whenever sea surface temperature anomalies in the Indian basin are created by the coupled model, the inverse relationship between the ENSO index and the Indian summer monsoon rainfall is recovered, and it is preserved if the atmospherical model is forced by the SSTs created by the coupled model. If the ocean model domain is limited to the Indian Ocean, changes in the Walker circulation over the Pacific during El Nino years induce a decrease of rainfall over the Indian subcontinent. However the observed correlation between the ENSO and the Indian Ocean Zonal Mode (IOZM) is not properly modelled and the two indices are not significantly correlated, independently on season. Whenever the ocean domain extends to the Pacific, and ENSO can impact both the atmospheric circulation and the ocean subsurface in the equatorial Eastern Indian Ocean, modelled precipitation patterns associated both to ENSO and to the IOZM closely resemble the observations.
-
ArticleLow-frequency variability of the Indian monsoon-ENSO relationship and the tropical Atlantic : the "Weakening" of the 1980s and 1990s(American Meteorological Society, 2007-08-15) Kucharski, Fred ; Bracco, Annalisa ; Yoo, J. H. ; Molteni, FrancoThe Indian monsoon–El Niño–Southern Oscillation (ENSO) relationship, according to which a drier than normal monsoon season precedes peak El Niño conditions, weakened significantly during the last two decades of the twentieth century. In this work an ensemble of integrations of an atmospheric general circulation model (AGCM) coupled to an ocean model in the Indian Basin and forced with observed sea surface temperatures (SSTs) elsewhere is used to investigate the causes of such a weakening. The observed interdecadal variability of the ENSO–monsoon relationship during the period 1950–99 is realistically simulated by the model and a dominant portion of the variability is associated with changes in the tropical Atlantic SSTs in boreal summer. In correspondence to ENSO, the tropical Atlantic SSTs display negative anomalies south of the equator in the last quarter of the twentieth century and weakly positive anomalies in the previous period. Those anomalies in turn produce heating anomalies, which excite a Rossby wave response in the Indian Ocean in both the model and the reanalysis data, impacting the time-mean monsoon circulation. The proposed mechanism of remote response of the Indian rainfall to tropical Atlantic sea surface temperatures is further tested forcing the AGCM coupled to the ocean model in the Indian Basin with climatological SSTs in the Atlantic Ocean and observed anomalies elsewhere. In this second ensemble the ENSO–monsoon relationship is characterized by a stable and strong anticorrelation through the whole second half of the twentieth century.