Hentschker
Christian
Hentschker
Christian
No Thumbnail Available
2 results
Search Results
Now showing
1 - 2 of 2
-
ArticleBacterial symbiont subpopulations have different roles in a deep-sea symbiosis(eLife Sciences Publications, 2021-01-06) Hinzke, Tjorven ; Kleiner, Manuel ; Meister, Mareike ; Schlüter, Rabea ; Hentschker, Christian ; Pané-Farré, Jan ; Hildebrandt, Petra ; Felbeck, Horst ; Sievert, Stefan M. ; Bonn, Florian ; Völker, Uwe ; Becher, Dorte ; Schweder, Thomas ; Markert, StephanieThe hydrothermal vent tubeworm Riftia pachyptila hosts a single 16S rRNA phylotype of intracellular sulfur-oxidizing symbionts, which vary considerably in cell morphology and exhibit a remarkable degree of physiological diversity and redundancy, even in the same host. To elucidate whether multiple metabolic routes are employed in the same cells or rather in distinct symbiont subpopulations, we enriched symbionts according to cell size by density gradient centrifugation. Metaproteomic analysis, microscopy, and flow cytometry strongly suggest that Riftia symbiont cells of different sizes represent metabolically dissimilar stages of a physiological differentiation process: While small symbionts actively divide and may establish cellular symbiont-host interaction, large symbionts apparently do not divide, but still replicate DNA, leading to DNA endoreduplication. Moreover, in large symbionts, carbon fixation and biomass production seem to be metabolic priorities. We propose that this division of labor between smaller and larger symbionts benefits the productivity of the symbiosis as a whole.
-
ArticleComparative proteomics of related symbiotic mussel species reveals high variability of host-symbiont interactions(Springer Nature, 2019-11-04) Ponnudurai, Ruby ; Heiden, Stefan E. ; Sayavedra, Lizbeth ; Hinzke, Tjorven ; Kleiner, Manuel ; Hentschker, Christian ; Felbeck, Horst ; Sievert, Stefan M. ; Schlüter, Rabea ; Becher, Dorte ; Schweder, Thomas ; Markert, StephanieDeep-sea Bathymodiolus mussels and their chemoautotrophic symbionts are well-studied representatives of mutualistic host–microbe associations. However, how host–symbiont interactions vary on the molecular level between related host and symbiont species remains unclear. Therefore, we compared the host and symbiont metaproteomes of Pacific B. thermophilus, hosting a thiotrophic symbiont, and Atlantic B. azoricus, containing two symbionts, a thiotroph and a methanotroph. We identified common strategies of metabolic support between hosts and symbionts, such as the oxidation of sulfide by the host, which provides a thiosulfate reservoir for the thiotrophic symbionts, and a cycling mechanism that could supply the host with symbiont-derived amino acids. However, expression levels of these processes differed substantially between both symbioses. Backed up by genomic comparisons, our results furthermore revealed an exceptionally large repertoire of attachment-related proteins in the B. thermophilus symbiont. These findings imply that host–microbe interactions can be quite variable, even between closely related systems.