Cones Seth

No Thumbnail Available
Last Name
Cones
First Name
Seth
ORCID
0000-0002-8616-975X

Search Results

Now showing 1 - 5 of 5
  • Article
    Probable signature whistle production in Atlantic white-sided (Lagenorhynchus acutus) and short-beaked common (Delphinus delphis) dolphins near Cape Cod, Massachusetts
    (Wiley, 2022-09-15) Cones, Seth ; Dent, Molly ; Walkes, Sam ; Bocconcelli, Alessandro ; DeWind, Christianna ; Arjasbi, Kayla ; Rose, Kathryn S. ; Silva, Tammy L. ; Sayigh, Laela S.
    Some delphinids produce a learned, individually specific tonal whistle that conveys identity information to conspecifics (Janik & Sayigh, 2013). These whistles, termed signature whistles, were first described by Caldwell and Caldwell (1965) and have been studied intensively over the past several decades (Janik & Sayigh, 2013). In common bottlenose dolphins (Tursiops truncatus) and potentially other species, signature whistles facilitate many ecologically-important behaviors, including individual recognition and maintenance of group cohesion (Janik & Slater, 1998). Additionally, signature whistle contours, or patterns of frequency change over time, can remain stable for several decades, aiding in long-term social bonds (Sayigh et al., 1990). Signature whistles account for approximately 38%–70% of all whistle production in free-swimming animals (Buckstaff, 2004; Cook et al., 2004; Watwood et al., 2005); this percentage can be up to 100% for isolated individuals in captivity (Caldwell et al., 1990). Most of our knowledge on the function and use of signature whistles stems from Tursiops spp., and their use and presence in other delphinid taxa is less understood. Nonetheless, seven additional delphinid species have been reported to produce signature whistles: Indo-Pacific bottlenose dolphins (Tursiops aduncus; Gridley et al., 2014), common dolphins (D. delphis; Caldwell & Caldwell 1968; Fearey et al., 2019), Atlantic spotted dolphins (Stenella plagiodon; Caldwell et al., 1970), Pacific white-sided dolphins (Lagenorhynchus obliquidens; Caldwell & Caldwell, 1973), Pacific humpback dolphins (Sousa chinensis; Van Parijs & Corkeron, 2001), and Guiana dolphins (Sotalia guianensis; Duarte de Figueiredo & Simão, 2009).
  • Article
    Augmenting biologging with supervised machine learning to study in situ behavior of the medusa Chrysaora fuscescens
    (Company of Biologists, 2019-08-23) Fannjiang, Clara ; Mooney, T. Aran ; Cones, Seth ; Mann, David ; Shorter, K. Alex ; Katija, Kakani
    Zooplankton play critical roles in marine ecosystems, yet their fine-scale behavior remains poorly understood because of the difficulty in studying individuals in situ. Here, we combine biologging with supervised machine learning (ML) to propose a pipeline for studying in situ behavior of larger zooplankton such as jellyfish. We deployed the ITAG, a biologging package with high-resolution motion sensors designed for soft-bodied invertebrates, on eight Chrysaora fuscescens in Monterey Bay, using the tether method for retrieval. By analyzing simultaneous video footage of the tagged jellyfish, we developed ML methods to: (1) identify periods of tag data corrupted by the tether method, which may have compromised prior research findings, and (2) classify jellyfish behaviors. Our tools yield characterizations of fine-scale jellyfish activity and orientation over long durations, and we conclude that it is essential to develop behavioral classifiers on in situ rather than laboratory data.
  • Article
    Sound sensitivity of the giant scallop (Placopecten magelanicus) is life stage, intensity, and frequency dependent
    (Acoustical Society of America, 2023-02-13) Jézéquel, Youenn ; Cones, Seth ; Mooney, T. Aran
    There is increasing concern that anthropogenic sounds have a significant impact on marine animals, but there remains insufficient data on sound sensitivities for most invertebrates, despite their ecological and economic importance. We quantified auditory thresholds (in particle acceleration levels) and bandwidth of the giant scallop (Placopecten magellanicus) and subsequently sought to discern sensitivity among two different life stages: juveniles (1 yr olds) and subadults (3 yr olds). We also leveraged a novel valvometry technique to quantify the amplitude of scallop valve gape reductions when exposed to different sound amplitudes and frequencies. Behavioral responses were obtained for lower frequencies below 500 Hz, with best sensitivity at 100 Hz. There were significant differences between the auditory thresholds of juveniles and subadults, with juveniles being more sensitive, suggesting ontogenetic differences in hearing sensitivity. Scallops showed intensity and frequency dependent responses to sounds, with higher valve closures to lower frequencies and higher sound levels. To our knowledge, these are the first data highlighting life stage, intensity, and frequency responses to sound in a marine benthic invertebrate. These results demonstrate clear sound sensitivity and underscore that the potential impacts of anthropogenic sound in valuable ecological resources, such as scallops, may be dependent on sound characteristics.
  • Article
    Pile driving repeatedly impacts the giant scallop (Placopecten magellanicus)
    (Nature Research, 2023-09-13) Jézéquel, Youenn ; Cones, Seth ; Jensen, Frants H. ; Brewer, Hannah ; Collins, John ; Mooney, T. Aran
    Large-scale offshore wind farms are a critical component of the worldwide climate strategy. However, their developments have been opposed by the fishing industry because of concerns regarding the impacts of pile driving vibrations during constructions on commercially important marine invertebrates, including bivalves. Using field-based daily exposure, we showed that pile driving induced repeated valve closures in different scallop life stages, with particularly stronger effects for juveniles. Scallops showed no acclimatization to repetitive pile driving across and within days, yet quickly returned to their initial behavioral baselines after vibration-cessation. While vibration sensitivity was consistent, daily pile driving did not disrupt scallop circadian rhythm, but suggests serious impacts at night when valve openings are greater. Overall, our results show distance and temporal patterns can support future mitigation strategies but also highlight concerns regarding the larger impact ranges of impending widespread offshore wind farm constructions on scallop populations.
  • Article
    Pile driving noise induces transient gait disruptions in the longfin squid (Doryteuthis pealeii)
    (Frontiers Media, 2022-12-15) Seth F. Cones ; Youenn Jézéquel ; Sophie Ferguson ; Nadège Aoki ; T. Aran Mooney
    Anthropogenic noise is now a prominent pollutant increasing in both terrestrial and marine environments. In the ocean, proliferating offshore windfarms, a key renewable energy source, are a prominent noise concern, as their pile driving construction is among the most intense anthropogenic sound sources. Yet, across taxa, there is little information of pile driving noise impacts on organismal fine-scale movement despite its key link to individual fitness. Here, we experimentally quantified the swimming behavior of an abundant squid species (Doryteuthis pealeii) of vital commercial and ecological importance in response to in situ pile driving activity on multiple temporal and spatial scales (thus exposed to differing received levels, or noise-doses). Pile driving induced energetically costly alarm-jetting behaviors in most (69%) individuals at received sound levels (in zero to peak) of 112-123 dB re 1 µm s-2, levels similar to those measured at the kilometer scale from some wind farm construction areas. No responses were found at a comparison site with lower received sound levels. Persistence of swimming pattern changes during noise-induced alarm responses, a key metric addressing energetic effects, lasted up to 14 s and were significantly shorter in duration than similar movement changes caused by natural conspecific interactions. Despite observing dramatic behavioral changes in response to initial pile driving noise, there was no evidence of gait changes over an experiment day. These results demonstrate that pile driving disrupts squid fine-scale movements, but impacts are short-lived suggesting that offshore windfarm construction may minimally impact the energetics of this ecologically key taxon. However, further work is needed to assess potential behavioral and physiological impacts at higher noise levels.