Peucker-Ehrenbrink Bernhard

No Thumbnail Available
Last Name
First Name

Search Results

Now showing 1 - 20 of 30
  • Preprint
    Global-scale evidence for the refractory nature of riverine black carbon
    ( 2018-05) Coppola, Alysha I. ; Wiedemeier, Daniel B. ; Galy, Valier ; Haghipour, Negar ; Hanke, Ulrich ; Nascimento, Gabriela S. ; Usman, Muhammed ; Blattmann, Thomas M. ; Reisser, Moritz ; Freymond, Chantal V. ; Zhao, Meixun ; Voss, Britta M. ; Wacker, Lukas ; Schefuß, Enno ; Peucker-Ehrenbrink, Bernhard ; Abiven, Samuel ; Schmidt, Michael W. I. ; Eglinton, Timothy I.
    Wildfires and incomplete combustion of fossil fuel produce large amounts of black carbon. Black carbon production and transport are essential components of the carbon cycle. Constraining estimates of black carbon exported from land to ocean is critical, given ongoing changes in land use and climate, which affect fire occurrence and black carbon dynamics. Here, we present an inventory of the concentration and radiocarbon content (∆14C) of particulate black carbon for 18 rivers around the globe. We find that particulate black carbon accounts for about 15.8 ± 0.9% of river particulate organic carbon, and that fluxes of particulate black carbon co-vary with river-suspended sediment, indicating that particulate black carbon export is primarily controlled by erosion. River particulate black carbon is not exclusively from modern sources but is also aged in intermediate terrestrial carbon pools in several high-latitude rivers, with ages of up to 17,000 14C years. The flux-weighted 14C average age of particulate black carbon exported to oceans is 3,700 ± 400 14C years. We estimate that the annual global flux of particulate black carbon to the ocean is 0.017 to 0.037 Pg, accounting for 4 to 32% of the annually produced black carbon. When buried in marine sediments, particulate black carbon is sequestered to form a long-term sink for CO2.
  • Article
    Drivers of organic molecular signatures in the Amazon River
    (American Geophysical Union, 2021-06-11) Kurek, Martin ; Stubbins, Aron ; Drake, Travis W. ; Moura, José M. S. ; Holmes, Robert M. ; Osterholz, Helena ; Dittmar, Thorsten ; Peucker-Ehrenbrink, Bernhard ; Mitsuya, Miyuki ; Spencer, Robert G. M.
    As climate-driven El Niño Southern Oscillation (ENSO) events are projected to increase in frequency and severity, much attention has focused on impacts regarding ecosystem productivity and carbon balance in Amazonian rainforests, with comparatively little attention given to carbon dynamics in fluvial ecosystems. In this study, we compared the wet 2012 La Niña period to the following normal hydrologic period in the Amazon River. Elevated water flux during the La Niña period was accompanied by dilution of inorganic ion concentrations. Furthermore, the La Niña period exported 2.77 Tg C yr−1 more dissolved organic carbon (DOC) than the normal period, an increase greater than the annual amount of DOC exported by the Mississippi River. Using ultra-high-resolution mass spectrometry, we detected both intra- and interannual differences in dissolved organic matter (DOM) composition, revealing that DOM exported during the dry season and the normal period was more aliphatic, whereas compounds in the wet season and following the La Niña event were more aromatic, with ramifications for its environmental role. Furthermore, as this study has the highest temporal resolution DOM compositional data for the Amazon River to-date we showed that compounds were highly correlated to a 6-month lag in Pacific temperature and pressure anomalies, suggesting that ENSO events could impact DOM composition exported to the Atlantic Ocean. Therefore, as ENSO events increase in frequency and severity into the future it seems likely that there will be downstream consequences for the fate of Amazon Basin-derived DOM concurrent with lag periods as described here.
  • Preprint
    The Late Eocene 187Os / 188Os excursion : chemostratigraphy, cosmic dust flux and the early Oligocene glaciation
    ( 2005-09-12) Dalai, Tarun K. ; Ravizza, Gregory E. ; Peucker-Ehrenbrink, Bernhard
    High resolution records (ca. 100 kyr) of Os isotope composition (187Os/188Os) in bulk sediments from two tropical Pacific sites (ODP Sites 1218 and 1219) capture the complete Late Eocene 187Os/188Os excursion and confirm that the Late Eocene 187Os/188Os minimum, earlier reported by Ravizza and Peucker-Ehrenbrink [Earth Planet. Sci. Lett. 210 (2003) 151-165], is a global feature. Using the astronomically tuned age models available for these sites, it is suggested that the Late Eocene 187Os/188Os minimum can be placed at 34.5±0.1 Ma in the marine records. In addition, two other distinct features of the 187Os/188Os excursion that are correlatable among sections are proposed as chemostratigraphic markers which can serve as age control points with a precision of ca. ±0.1 Myr. We propose a speculative hypothesis that higher cosmic dust flux in the Late Eocene may have contributed to global cooling and early Oligocene glaciation (Oi-1) by supplying bio-essential trace elements to the oceans and thereby resulting in higher ocean productivity, enhanced burial of organic carbon and draw down of atmospheric CO2. To determine if the hypothesis that enhanced cosmic dust flux in the Late Eocene was a cause for the 187Os/188Os excursion can be tested by using the paired bulk sediment and leachate Os isotope composition, 187Os/188Os were also measured in sediment leachates. Results of analyses of leachates are inconsistent between the south Atlantic and the Pacific sites, and therefore do not yield a robust test of this hypothesis. Comparison of 187Os/188Os records with high resolution benthic foraminiferal δ18O records across the Eocene-Oligocene transition suggests that 187Os flux to the oceans decreased during cooling and ice growth leading to the Oi-1 glaciation, whereas subsequent decay of ice-sheets and deglacial weathering drove seawater 187Os/188Os to higher values. Although the precise timing and magnitude of these changes in weathering fluxes and their effects on the marine 187Os/188Os records are obscured by recovery from the Late Eocene 187Os/188Os excursion, evidence of the global influence of glaciation on supply of Os to the ocean is robust as it has now been documented in both Pacific and Atlantic records.
  • Article
    Geochemistry of small Canadian Arctic rivers with diverse geological and hydrological settings
    (American Geophysical Union, 2020-01-03) Brown, Kristina A. ; Williams, William J. ; Carmack, Eddy C. ; Fiske, Gregory J. ; Francois, Roger ; McLennan, Donald ; Peucker-Ehrenbrink, Bernhard
    A survey of 25 coastal‐draining rivers across the Canadian Arctic Archipelago (CAA) shows that these systems are distinct from the largest Arctic rivers that drain watersheds extending far south of the Arctic circle. Observations collected from 2014 to 2016 illustrate the influences of seasonal hydrology, bedrock geology, and landscape physiography on each river's inorganic geochemical characteristics. Summertime data show the impact of coincident gradients in lake cover and surficial geology on river geochemical signatures. In the north and central CAA, drainage basins are generally smaller, underlain by sedimentary bedrock, and their hydrology is driven by seasonal precipitation pulses that undergo little modification before they enter the coastal ocean. In the southern CAA, a high density of lakes stores water longer within the terrestrial system, permitting more modification of water isotope and geochemical characteristics. Annual time‐series observations from two CAA rivers reveal that their concentration‐discharge relationships differ compared with those of the largest Arctic rivers, suggesting that future projections of dissolved ion fluxes from CAA rivers to the Arctic Ocean may not be reliably made based on compositions of the largest Arctic rivers alone, and that rivers draining the CAA region will likely follow different trajectories of change under a warming climate. Understanding how these small, coastal‐draining river systems will respond to climate change is essential to fully evaluate the impact of changing freshwater inputs to the Arctic marine system.
  • Preprint
    Asteroid breakup linked to the Great Ordovician Biodiversification Event
    ( 2007-09-26) Schmitz, Birger ; Harper, David A. T. ; Peucker-Ehrenbrink, Bernhard ; Stouge, Svend ; Alwmark, Carl ; Cronholm, Anders ; Bergstrom, Stig M. ; Tassinari, Mario ; Xiaofeng, Wang
    The rise and diversification of shelled invertebrate life in the early Phanerozoic took place in two major steps. During the Cambrian Explosion at ca. 540 Ma a large number of new phyla appeared over a short time interval. Biodiversity at the family, genus and species level, however, remained low until the Great Ordovician Biodiversification Event (GOBE) in the mid-Ordovician. This event represents the most intense phase of species radiation during the Paleozoic and the biological component of planet's seafloors was irreversibly changed. The causes of the GOBE remain elusive mainly because of a lack of detailed data relating faunal to environmental change. Here we show that the onset of the major phase of the GOBE coincides at ca. 470 Ma with the disruption in the asteroid belt of the L chondrite parent body, the largest documented asteroid breakup event during the last few billion years. The precise coincidence between an event in space and on Earth is established by bed-by-bed records of extraterrestrial chromite, osmium isotopes and invertebrate fossils in mid- Ordovician strata in Baltoscandia and China. We argue that frequent impacts on Earth of kilometer-sized asteroids accelerated the biodiversification. This is supported also by abundant mid-Ordovician fossil meteorites and impact craters.
  • Article
    Quantitative bedrock geology of the continents and large-scale drainage regions
    (American Geophysical Union, 2007-06-13) Peucker-Ehrenbrink, Bernhard ; Miller, Mark W.
    We quantitatively analyze the area-age distribution of sedimentary, extrusive volcanic, and endogenous (plutonic and/or metamorphic) bedrock on the basis of data from the most recent digital Geological Map of the World at a scale of 1:25,000,000. The spatial resolution of the digital bedrock data averages 13,905 km2 per polygon. Comparison of certain regions of the world, previously analyzed at higher spatial resolution, with the low-resolution world data reveals general consistency in the areal exposure of major rock types as well as a minor systematic bias toward older average bedrock ages in the global data set. Application of the global bedrock data to 19 large-scale drainage regions and three large, internally drained regions reveals considerable regional variability of Earth's bedrock geology that is consistent with the dominant geotectonic setting of the respective drainage region.
  • Article
    The pulse of the Amazon: fluxes of dissolved organic carbon, nutrients, and ions from the world's largest river
    (American Geophysical Union, 2021-03-15) Drake, Travis W. ; Hemingway, Jordon D. ; Kurek, Martin ; Peucker-Ehrenbrink, Bernhard ; Brown, Kristina A. ; Holmes, Robert M. ; Galy, Valier ; Moura, José M. ; Mitsuya, Miyuki ; Wassenaar, Leonard ; Six, Johan ; Spencer, Robert G. M.
    The Amazon River drains a diverse tropical landscape greater than 6 million km2, culminating in the world's largest export of freshwater and dissolved constituents to the ocean. Here, we present dissolved organic carbon (DOC), organic and inorganic nitrogen (DON, DIN), orthophosphate (PO43−), and major and trace ion concentrations and fluxes from the Amazon River using 26 samples collected over three annual hydrographs. Concentrations and fluxes were predominantly controlled by the annual wet season flood pulse. Average DOC, DON, DIN, and PO43− fluxes (±1 s.d.) were 25.5 (±1.0), 1.14 (±0.05), 0.82 (±0.03), and 0.063 (±0.003) Tg yr−1, respectively. Chromophoric dissolved organic matter absorption (at 350 nm) was strongly correlated with DOC concentrations, resulting in a flux of 74.8 × 106 m−2 yr−1. DOC and DON concentrations positively correlated with discharge while nitrate + nitrite concentrations negatively correlated, suggesting mobilization and dilution responses, respectively. Ammonium, PO43−, and silica concentrations displayed chemostatic responses to discharge. Major and trace ion concentrations displayed clockwise hysteresis (except for chloride, sodium, and rubidium) and exhibited either dilution or chemostatic responses. The sources of weathered cations also displayed seasonality, with the highest proportion of carbonate- and silicate-derived cations occurring during peak and baseflow, respectively. Finally, our seasonally resolved weathering model resulted in an average CO2 consumption yield of (3.55 ± 0.11) × 105 mol CO2 km−2 yr−1. These results represent an updated and temporally refined quantification of dissolved fluxes that highlight the strong seasonality of export from the world's largest river and set a robust baseline against which to gauge future change.
  • Preprint
    No evidence of extraterrestrial noble metal and helium anomalies at Marinoan glacial termination
    ( 2015-08) Peucker-Ehrenbrink, Bernhard ; Waters, Christine A. ; Kurz, Mark D. ; Hoffman, Paul F.
    High concentrations of extraterrestrial iridium have been reported in terminal Sturtian and Marinoan glacial marine sediments and are used to argue for long (likely 3-12 Myr) durations of these Cryogenian glaciations. Reanalysis of the Marinoan sedimentary rocks used in the original study, supplemented by sedimentary rocks from additional terminal Marinoan sections, however, does not confirm the initial report. New platinum group element concentrations, and 187Os/188Os and 3He/4He signatures are consistent with crustal origin and minimal extraterrestrial contributions. The discrepancy is likely caused by different sample masses used in the two studies, with this study being based on much larger samples that better capture the stochastic distribution of extraterrestrial particles in marine sediments. Strong enrichment of redox-sensitive elements, particularly rhenium, up-section in the basal postglacial cap carbonates, may indicate a return to more fully oxygenated seawater in the aftermath of the Marinoan snowball earth. Sections dominated by hydrogenous osmium indicate increasing submarine hydrothermal sources and/or continental inputs that are increasingly dominated by young mantle-derived rocks after deglaciation. Sedimentation rate estimates for the basal cap carbonates yield surprisingly slow rates of a few centimeters per thousand years. This study highlights the importance of using sedimentary rock samples that represent sufficiently large area-time products to properly sample extraterrestrial particles representatively, and demonstrates the value of using multiple tracers of extraterrestrial matter.
  • Preprint
    Chromium isotope fractionation during subduction-related metamorphism, black shale weathering, and hydrothermal alteration
    ( 2016-01) Wang, Xiangli ; Planavsky, Noah J. ; Reinhard, Christopher T. ; Zou, Huijuan ; Ague, Jay J. ; Wu, Yuanbao ; Gill, Benjamin C. ; Schwarzenbach, Esther M. ; Peucker-Ehrenbrink, Bernhard
    Chromium (Cr) isotopes are an emerging proxy for redox processes at Earth’s surface. However, many geological reservoirs and isotope fractionation processes are still not well understood. The purpose of this contribution is to move forward our understanding of (1) Earth’s high temperature Cr isotope inventory and (2) Cr isotope fractionations during subduction-related metamorphism, black shale weathering and hydrothermal alteration. The examined basalts and their metamorphosed equivalents yielded δ53Cr values falling within a narrow range of -0.12±0.13‰ (2SD, n=30), consistent with the previously reported range for the bulk silicate Earth (BSE). Compilations of currently available data for fresh silicate rocks (43 samples), metamorphosed silicate rocks (50 samples), and mantle chromites (39 samples) give δ53Cr values of -0.13±0.13‰, -0.11±0.13‰, and -0.07±0.13‰, respectively. Although the number of high-temperature samples analyzed has tripled, the originally proposed BSE range appears robust. This suggests very limited Cr isotope fractionation under high temperature conditions. Additionally, in a highly altered metacarbonate transect that is representative of fluid-rich regional metamorphism, we did not find resolvable variations in δ53Cr, despite significant loss of Cr. This work suggests that primary Cr isotope signatures may be preserved even in instances of intense metamorphic alteration at relatively high fluid-rock ratios. Oxidative weathering of black shale at low pH creates isotopically heavy mobile Cr(VI). However, a significant proportion of the Cr(VI) is apparently immobilized near the weathering surface, leading to local enrichment of isotopically heavy Cr (δ53Cr values up to ~0.5‰). The observed large Cr isotope variation in the black shale weathering profile provides indirect evidence for active manganese oxide formation, which is primarily controlled by microbial activity. Lastly, we found widely variable δ53Cr (-0.2‰ to 0.6‰) values in highly serpentinized peridotites from ocean drilling program drill cores and outcropping ophiolite sequences. The isotopically heavy serpentinites are most easily explained through a multi-stage alteration processes: Cr loss from the host rock under oxidizing conditions, followed by Cr enrichment under sulfate reducing conditions. In contrast, Cr isotope variability is limited in mildly altered mafic oceanic crust.
  • Article
    Land2Sea database of river drainage basin sizes, annual water discharges, and suspended sediment fluxes
    (American Geophysical Union, 2009-06-20) Peucker-Ehrenbrink, Bernhard
    The Land2Sea database contains data on the sizes of 1519 exorheic river drainage basins (79% of the exorheic land area), annual suspended sediment fluxes (593 rivers, 63% of the exorheic land area), and water discharges (1272 rivers, 76% of the exorheic land area) that have been compiled from a variety of sources. The database extends earlier compilations, such as GEMS/GLORI. The river basins are grouped into 19 large-scale drainage regions to investigate the regional variability in freshwater and sediment fluxes to various ocean basins. The annual suspended sediment flux to the coastal ocean (~18.5 × 109 tons) is dominated by east Asia (6.1 × 109 tons); Arabia, India, and southeast Asia (4.3 × 109 tons); and eastern South America (2.4 × 109 tons). Small topical islands of Oceania support the highest annual sediment fluxes per drainage area (~9650 t km−2 a−1). Annual freshwater discharge to the coastal ocean (~38,857 km3) is dominated by runoff from eastern South America (11,199 km3); east Asia (7114 km3); and Arabia, India, and southeast Asia (4384 km3). The empirical data agree well with results from global models (ART and BQART) that have been trained on a subset of the data compiled here.
  • Preprint
    Multiproxy analysis of a new terrestrial and a marine Cretaceous–Paleogene (K–Pg) boundary site from New Zealand
    ( 2010-10-20) Ferrow, Embaie ; Vajda, Vivi ; Koch, Christian Bender ; Peucker-Ehrenbrink, Bernhard ; Willumsen, Pi Suhr
    An integrated study of palynology, Mössbauer spectroscopy, mineralogy and osmium isotopes has led to the detection of the first K-Pg boundary clay layer in a Southern Hemisphere terrestrial setting. The K-Pg boundary layer was independently identified at centimetre resolution by all the above mentioned methods at the marine K-Pg boundary site of mid-Waipara and the terrestrial site of Compressor Creek (Greymouth coal field), New Zealand. Mössbauer spectroscopy shows an anomaly of Fe-containing particles in both K-Pg boundary sections: jarosite at mid-Waipara and goethite at Compressor Creek. This anomaly coincides with a turnover in vegetation indicated by an interval dominated by fern spores and extinction of key pollen species in both sections. In addition to the terrestrial floristic changes, the mid-Waipara section reveals a turnover in the dinoflagellate assemblages and the appearance of global earliest Danian index species. Geochemical data reveal relatively small iridium enrichments in the boundary layers of 321 pg/g at mid-Waipara and 176 pg/g at Compressor Creek. Unradiogenic 187Os/188Os values of the boundary clay reveal the presence of a significant extraterrestrial component. We interpret the accumulation of Fe nano-phases at the boundary as originating from both the impactor and the crystalline basement target rock. The goethite and jarosite are interpreted as secondary phases formed by weathering and diagenesis. The primary phases were probably controlled by the initial composition of the vapor plume and condensation kinetics rather than condensation thermodynamics. This investigation indicates that identification of Fe in nano-phases by Mössbauer spectroscopy is an accurate and cost-effective method for identifying impact event horizons and it efficiently complements widely used biostratigraphic and geochemical methods.
  • Article
    Groundwater discharge impacts marine isotope budgets of Li, Mg, Ca, Sr, and Ba
    (Nature Research, 2021-01-08) Mayfield, Kimberley K. ; Eisenhauer, Anton ; Santiago Ramos, Danielle ; Higgins, John A. ; Horner, Tristan J. ; Auro, Maureen E. ; Magna, Tomas ; Moosdorf, Nils ; Charette, Matthew A. ; Gonneea, Meagan E. ; Brady, Carolyn E. ; Komar, Nemanja ; Peucker-Ehrenbrink, Bernhard ; Paytan, Adina
    Groundwater-derived solute fluxes to the ocean have long been assumed static and subordinate to riverine fluxes, if not neglected entirely, in marine isotope budgets. Here we present concentration and isotope data for Li, Mg, Ca, Sr, and Ba in coastal groundwaters to constrain the importance of groundwater discharge in mediating the magnitude and isotopic composition of terrestrially derived solute fluxes to the ocean. Data were extrapolated globally using three independent volumetric estimates of groundwater discharge to coastal waters, from which we estimate that groundwater-derived solute fluxes represent, at a minimum, 5% of riverine fluxes for Li, Mg, Ca, Sr, and Ba. The isotopic compositions of the groundwater-derived Mg, Ca, and Sr fluxes are distinct from global riverine averages, while Li and Ba fluxes are isotopically indistinguishable from rivers. These differences reflect a strong dependence on coastal lithology that should be considered a priority for parameterization in Earth-system models.
  • Article
    A fossil winonaite-like meteorite in Ordovician limestone : a piece of the impactor that broke up the L-chondrite parent body?
    (Elsevier, 2014-06-06) Schmitz, Birger ; Huss, Gary R. ; Meier, Matthias M. M. ; Peucker-Ehrenbrink, Bernhard ; Church, Ross P. ; Cronholm, Anders ; Davies, Melvyn B. ; Heck, Philipp R. ; Johansen, Anders ; Keil, Klaus ; Kristiansson, Per ; Ravizza, Gregory E. ; Tassinari, Mario ; Terfelt, Fredrik
    About a quarter of all meteorites falling on Earth today originate from the breakup of the L-chondrite parent body ∼470 Ma∼470 Ma ago, the largest documented breakup in the asteroid belt in the past ∼3 Ga∼3 Ga. A window into the flux of meteorites to Earth shortly after this event comes from the recovery of about 100 fossil L chondrites (1–21 cm in diameter) in a quarry of mid-Ordovician limestone in southern Sweden. Here we report on the first non-L-chondritic meteorite from the quarry, an 8 cm large winonaite-related meteorite of a type not known among present-day meteorite falls and finds. The noble gas data for relict spinels recovered from the meteorite show that it may be a remnant of the body that hit and broke up the L-chondrite parent body, creating one of the major asteroid families in the asteroid belt. After two decades of systematic recovery of fossil meteorites and relict extraterrestrial spinel grains from marine limestone, it appears that the meteorite flux to Earth in the mid-Ordovician was very different from that of today.
  • Preprint
    Anthropogenic disturbance of element cycles at the Earth’s surface
    ( 2012-07) Sen, Indra S. ; Peucker-Ehrenbrink, Bernhard
    The extent to which humans are modifying Earth’s surface chemistry can be quantified by comparing total anthropogenic element fluxes with their natural counterparts (Klee & Graedel, 2004). We quantify anthropogenic mass transfer of 77 elements from mining, fossil fuel burning, biomass burning, construction activities, and human apportionment of terrestrial net primary productivity, and compare it to natural mass transfer from terrestrial and marine net primary productivity, riverine dissolved and suspended matter fluxes to the ocean, soil erosion, eolian dust, sea-salt spray, cosmic dust, volcanic emissions and – for helium – hydrodynamic escape from the Earth’s atmosphere. We introduce an approach to correct for losses during industrial processing of elements belonging to geochemically coherent groups, and explicitly incorporate uncertainties of element mass fluxes through Monte Carlo simulations. We find that at the Earth’s surface anthropogenic fluxes of iridium, osmium, helium, gold, ruthenium, antimony, platinum, palladium, rhenium, rhodium and chromium currently exceed natural fluxes. For these elements mining is the major factor of anthropogenic influence, whereas petroleum burning strongly influences the surficial cycle of rhenium. Our assessment indicates that if anthropogenic contributions to soil erosion and eolian dust are considered, anthropogenic fluxes of up to 62 elements surpass their corresponding natural fluxes.
  • Preprint
    Geochemical tracers of extraterrestrial matter in sediments
    ( 2016-05) Peucker-Ehrenbrink, Bernhard ; Ravizza, Gregory E. ; Winckler, Gisela
    Every year, tens of thousands of tons of cosmic dust accumulate at the Earth’s surface, representing a continuation of the accretion process that started 4.57 billion years ago. The unique geochemical properties of these materials, compared to the Earth’s surface, render them excellent tracers of Solar System, atmospheric, oceanographic, and geologic processes. These processes can be recovered from the records preserved in marine and terrestrial sediments, including snow and ice. We review evidence from these natural archives to illuminate temporal and spatial variations in the flux and composition of extraterrestrial material to Earth, as well as the terrestrial processes that affect the distribution of extraterrestrial tracers in sediments.
  • Article
    Atmospheric mercury and fine particulate matter in coastal New England : implications for mercury and trace element sources in the northeastern United States
    (Elsevier B.V., 2013-08-29) Kolker, Allan ; Engle, Mark A. ; Peucker-Ehrenbrink, Bernhard ; Geboy, Nicholas J. ; Krabbenhoft, David P. ; Bothner, Michael H. ; Tate, Michael T.
    Intensive sampling of ambient atmospheric fine particulate matter was conducted at Woods Hole, Massachusetts over a four-month period from 3 April to 29 July, 2008, in conjunction with year-long deployment of the USGS Mobile Mercury Lab. Results were obtained for trace elements in fine particulate matter concurrently with determination of ambient atmospheric mercury speciation and concentrations of ancillary gasses (SO2, NOx, and O3). For particulate matter, trace element enrichment factors greater than 10 relative to crustal background values were found for As, Bi, Cd, Cu, Hg, Pb, Sb, V, and Zn, indicating contribution of these elements by anthropogenic sources. For other elements, enrichments are consistent with natural marine (Na, Ca, Mg, Sr) or crustal (Ba, Ce, Co, Cs, Fe, Ga, La, Rb, Sc, Th, Ti, U, Y) sources, respectively. Positive matrix factorization was used together with concentration weighted air-mass back trajectories to better define element sources and their locations. Our analysis, based on events exhibiting the 10% highest PM2.5 contributions for each source category, identifies coal-fired power stations concentrated in the U.S. Ohio Valley, metal smelting in eastern Canada, and marine and crustal sources showing surprisingly similar back trajectories, at times each sampling Atlantic coastal airsheds. This pattern is consistent with contribution of Saharan dust by a summer maximum at the latitude of Florida and northward transport up the Atlantic Coast by clockwise circulation of the summer Bermuda High. Results for mercury speciation show diurnal production of RGM by photochemical oxidation of Hg° in a marine environment, and periodic traverse of the study area by correlated RGM-SO2(NOx) plumes, indicative of coal combustion sources.
  • Article
    Climate control on terrestrial biospheric carbon turnover
    (National Academy of Sciences, 2021-02-23) Eglinton, Timothy I. ; Galy, Valier ; Hemingway, Jordon D. ; Feng, Xiaojuan ; Bao, Hongyan ; Blattmann, Thomas M. ; Dickens, Angela F. ; Gies, Hannah ; Giosan, Liviu ; Haghipour, Negar ; Hou, Pengfei ; Lupker, Maarten ; McIntyre, Cameron P. ; Montlucon, Daniel B. ; Peucker-Ehrenbrink, Bernhard ; Ponton, Camilo ; Schefuß, Enno ; Schwab, Melissa S. ; Voss, Britta M. ; Wacker, Lukas ; Wu, Ying ; Zhao, Meixun
    Terrestrial vegetation and soils hold three times more carbon than the atmosphere. Much debate concerns how anthropogenic activity will perturb these surface reservoirs, potentially exacerbating ongoing changes to the climate system. Uncertainties specifically persist in extrapolating point-source observations to ecosystem-scale budgets and fluxes, which require consideration of vertical and lateral processes on multiple temporal and spatial scales. To explore controls on organic carbon (OC) turnover at the river basin scale, we present radiocarbon (14C) ages on two groups of molecular tracers of plant-derived carbon—leaf-wax lipids and lignin phenols—from a globally distributed suite of rivers. We find significant negative relationships between the 14C age of these biomarkers and mean annual temperature and precipitation. Moreover, riverine biospheric-carbon ages scale proportionally with basin-wide soil carbon turnover times and soil 14C ages, implicating OC cycling within soils as a primary control on exported biomarker ages and revealing a broad distribution of soil OC reactivities. The ubiquitous occurrence of a long-lived soil OC pool suggests soil OC is globally vulnerable to perturbations by future temperature and precipitation increase. Scaling of riverine biospheric-carbon ages with soil OC turnover shows the former can constrain the sensitivity of carbon dynamics to environmental controls on broad spatial scales. Extracting this information from fluvially dominated sedimentary sequences may inform past variations in soil OC turnover in response to anthropogenic and/or climate perturbations. In turn, monitoring riverine OC composition may help detect future climate-change–induced perturbations of soil OC turnover and stocks.
  • Article
    Quantitative bedrock geology of east and Southeast Asia (Brunei, Cambodia, eastern and southeastern China, East Timor, Indonesia, Japan, Laos, Malaysia, Myanmar, North Korea, Papua New Guinea, Philippines, far-eastern Russia, Singapore, South Korea, Taiwan, Thailand, Vietnam)
    (American Geophysical Union, 2004-01-17) Peucker-Ehrenbrink, Bernhard ; Miller, Mark W.
    We quantitatively analyze the area-age distribution of sedimentary, igneous and metamorphic bedrock based on data from the most recent digital geologic maps of East and Southeast Asia (Coordinating Committee for Coastal and Offshore Geosciences Programmes in East and Southeast Asia (CCOP) and the Geologic Survey of Japan, 1997; 1:2,000,000), published as Digital Geoscience Map G-2 by the Geological Survey of Japan. Sedimentary rocks, volcanic rocks, plutonic rocks, ultramafic rocks and metamorphic rocks cover 73.3%, 8.5%, 8.8%, 0.9%, and 8.6% of the surface area, respectively. The average ages of major lithologic units, weighted according to bedrock area, are as follows: sedimentary rocks (average stratigraphic age of 123 Myr/median age of 26 Myr), volcanic rocks (84 Myr/20 Myr), intrusive rocks (278 Myr/195 Myr), ultramafic rocks (unknown) and metamorphic rocks (1465 Myr/1118 Myr). The variability in lithologic composition and age structure of individual countries reflects the complex tectonic makeup of this region that ranges from Precambrian cratons (e.g., northeast China and North Korea) to Mesozoic-Cenozoic active margins (e.g., Japan, the Philippines, Indonesia and New Guinea). The spatial resolution of the data varies from 44 km2 per polygon (Japan) to 1659 km2 per polygon (Taiwan) and is, on average (490 km2/polygon), similar to our previous analyses of the United States of America and Canada. The temporal and spatial resolution is sufficiently high to perform age-area analyses of individual river basins larger than ∼10,000 km2 and to quantitatively evaluate the relationship between bedrock geology and river chemistry. As many rivers draining tropical, mountainous islands of East and Southeast Asia have a disproportionate effect on the dissolved and particulate load delivered to the world oceans, bedrock geology in such river drainage basins disproportionately affect ocean chemistry.
  • Preprint
    Dissolved strontium in the subterranean estuary- implications for the marine strontium isotope budget
    ( 2013-01-13) Beck, Aaron J. ; Charette, Matthew A. ; Cochran, J. Kirk ; Gonneea, Meagan E. ; Peucker-Ehrenbrink, Bernhard
    Submarine groundwater discharge (SGD) to the ocean supplies Sr with less radiogenic 87Sr/86Sr than seawater, and thus constitutes an important term in the Sr isotope budget in the modern ocean. However, few data exist for Sr in coastal groundwater or in the geochemically dynamic subterranean estuary (STE). We examined Sr concentrations and isotope ratios from nine globally-distributed coastal sites and characterized the behavior of Sr in the STE. Dissolved Sr generally mixed conservatively in the STE, although large differences were observed in the meteoric groundwater end-member Sr concentrations among sites (0.1 – 24 μM Sr). Strontium isotope exchange was observed in the STE at five of the sites studied, and invariably favored the meteoric groundwater end-member signature. Most of the observed isotope exchange occurred in the salinity range 5-15, and reached up to 40% exchange at salinity 10. Differences in fresh groundwater Sr concentrations and isotope ratios (87Sr/86Sr = 0.707-0.710) reflected aquifer lithology. The SGD end-member 87Sr/86Sr must be lower than modern seawater (i.e., less than 0.70916) in part because groundwater Sr concentrations are orders of magnitude higher in less-carbonate and volcanic island aquifers. A simple lithological model and groundwater Sr data compiled from the literature were used to estimate a global average groundwater end-member of 2.9 μM Sr with 87Sr/86Sr = 0.7089. This represents a meteoric-SGD-driven Sr input to the ocean of 0.7-2.8 × 1010 mol Sr y-1. Meteoric SGD therefore accounts for 2-8% of the oceanic Sr isotope budget, comparable to other known source terms, but is insufficient to balance the remainder of the budget. Using reported estimates for brackish SGD, the estimated volume discharge at salinity 10 (7-11 × 1015 L y-1) was used to evaluate the impact of isotope exchange in the STE on the brackish SGD Sr flux. A moderate estimate of 25% isotope exchange in the STE gives an SGD Sr end-member 87Sr/86Sr of 0.7091. The brackish SGD Sr flux thus accounts for 11-23% of the marine Sr isotope budget, but does not appear sufficient to balance the ~40% remaining after other known sources are included. Substantial uncertainties remain for estimating the SGD source of Sr to the global ocean, especially in the determination of the volume flux of meteoric SGD, and in the paucity of measurements of groundwater Sr isotope composition in major SGD regions such as Papua New Guinea, the South America west coast, and West Africa. Consequently, our global estimate should be viewed with some caution. Nevertheless, we show that the combined sources of meteoric SGD and brackish SGD coupled with isotope exchange in the STE may constitute a substantial component (~13-30%) of the modern oceanic 87Sr/86Sr budget, likely exceeding less radiogenic Sr inputs by sedimentary diagenesis and hydrothermal circulation through the mid-ocean ridge system. Temporal variation in SGD Sr fluxes and isotope composition may have contributed to fluctuations in the oceanic 87Sr/86Sr ratio over geologic time.
  • Article
    Isotopic evidence for sources of dissolved carbon and the role of organic matter respiration in the Fraser River basin, Canada
    (Springer, 2022-07-10) Voss, Britta M. ; Eglinton, Timothy I. ; Peucker-Ehrenbrink, Bernhard ; Galy, Valier ; Lang, Susan Q. ; McIntyre, Cameron P. ; Spencer, Robert G. M. ; Bulygina, Ekaterina ; Wang, Zhaohui Aleck ; Guay, Katherine A.
    Sources of dissolved and particulate carbon to the Fraser River system vary significantly in space and time. Tributaries in the northern interior of the basin consistently deliver higher concentrations of dissolved organic carbon (DOC) to the main stem than other tributaries. Based on samples collected near the Fraser River mouth throughout 2013, the radiocarbon age of DOC exported from the Fraser River does not change significantly across seasons despite a spike in DOC concentration during the freshet, suggesting modulation of heterogeneous upstream chemical and isotopic signals during transit through the river basin. Dissolved inorganic carbon (DIC) concentrations are highest in the Rocky Mountain headwater region where carbonate weathering is evident, but also in tributaries with high DOC concentrations, suggesting that DOC respiration may be responsible for a significant portion of DIC in this basin. Using an isotope and major ion mass balance approach to constrain the contributions of carbonate and silicate weathering and DOC respiration, we estimate that up to 33 ± 11% of DIC is derived from DOC respiration in some parts of the Fraser River basin. Overall, these results indicate close coupling between the cycling of DOC and DIC, and that carbon is actively processed and transformed during transport through the river network.