Oris
James T.
Oris
James T.
No Thumbnail Available
Search Results
Now showing
1 - 2 of 2
-
PreprintMercury flux to sediments of Lake Tahoe, California-Nevada( 2009-08-12) Drevnick, Paul E. ; Shinneman, Avery L. C. ; Lamborg, Carl H. ; Engstrom, Daniel R. ; Bothner, Michael H. ; Oris, James T.We report estimates of mercury (Hg) flux to the sediments of Lake Tahoe, California-Nevada: 2 and 15-20 µg/m2/yr in preindustrial and modern sediments, respectively. These values result in a modern to preindustrial flux ratio of 7.5-10, which is similar to flux ratios recently reported for other alpine lakes in California, and greater than the value of 3 typically seen worldwide. We offer plausible hypotheses to explain the high flux ratios, including (1) proportionally less photoreduction and evasion of Hg with the onset of cultural eutrophication and (2) a combination of enhanced regional oxidation of gaseous elemental Hg and transport of the resulting reactive gaseous Hg to the surface with nightly downslope flows of air. If either of these mechanisms is correct, it could lead to local/regional solutions to lessen the impact of globally increasing anthropogenic emissions of Hg on Lake Tahoe and other alpine ecosystems.
-
PreprintMercury toxicity in livers of northern pike (Esox lucius) from Isle Royale, USA( 2007-12) Drevnick, Paul E. ; Roberts, Aaron P. ; Otter, Ryan R. ; Hammerschmidt, Chad R. ; Klaper, Rebecca ; Oris, James T.Many laboratory studies have documented that mercury can be toxic to fish, but it is largely unknown if mercury is toxic to fish in their natural environments. The objective of our study was to investigate the toxic effects of mercury on northern pike (Esox lucius) at Isle Royale, Michigan. In 124 northern pike from eight inland lakes, concentrations of total mercury in skin-on fillets ranged from 0.069 to 0.622 µg/g wet wt. Concentrations of total mercury in livers increased exponentially compared with concentrations in fillets, to a maximum of 3.1 µg/g wet wt. Methylmercury constituted a majority of the mercury in livers with total mercury concentrations <0.5 µg/g wet wt, but declined to 28-51% of the mercury in livers with total mercury concentrations >0.5 µg/g wet wt. Liver color (absorbance at 400 nm) varied among northern pike and was positively related to liver total mercury concentration. The pigment causing variation in liver color was identified as lipofuscin, which results from lipid peroxidation of membranous organelles. An analysis of covariance revealed lipofuscin accumulation was primarily associated with mercury exposure, and this association obscured any normal accumulation from aging. We also documented decreased lipid reserves in livers and poor condition factors of northern pike with high liver total mercury concentrations. Our results suggest (i) northern pike at Isle Royale are experiencing toxicity at concentrations of total mercury common for northern pike and other piscivorous fish elsewhere in North America and (ii) liver color may be useful for indicating mercury exposure and effects in northern pike at Isle Royale and possibly other aquatic ecosystems and other fish species.