Allen
Justine J.
Allen
Justine J.
No Thumbnail Available
Search Results
Now showing
1 - 4 of 4
-
PreprintHyperspectral imaging of cuttlefish camouflage indicates good color match in the eyes of fish predators( 2011-03-31) Chiao, Chuan-Chin ; Wickiser, J. Kenneth ; Allen, Justine J. ; Genter, Brock ; Hanlon, Roger T.Camouflage is a widespread phenomenon throughout nature and an important anti-predator tactic in natural selection. Many visual predators have keen color perception, thus camouflage patterns should provide some degree of color matching in addition to other visual factors such as pattern, contrast, and texture. Quantifying camouflage effectiveness in the eyes of the predator is a challenge from the perspectives of both biology and optical imaging technology. Here we take advantage of Hyperspectral Imaging (HSI), which records full-spectrum light data, to simultaneously visualize color match and pattern match in the spectral and the spatial domains, respectively. Cuttlefish can dynamically camouflage themselves on any natural substrate and, despite their colorblindness, produce body patterns that appear to have high-fidelity color matches to the substrate when viewed directly by humans or with RGB images. Live camouflaged cuttlefish on natural backgrounds were imaged using HSI, and subsequent spectral analysis revealed that most reflectance spectra of individual cuttlefish and substrates were similar, rendering the color match possible. Modeling color vision of potential di- and tri-chromatic fish predators of cuttlefish corroborated the spectral match analysis and demonstrated that camouflaged cuttlefish show good color match as well as pattern match in the eyes of fish predators. These findings (i) indicate the strong potential of HSI technology to enhance studies 3 of biological coloration, and (ii) provide supporting evidence that cuttlefish can produce color-coordinated camouflage on natural substrates despite lacking color vision.
-
ArticleDramatic fighting by male cuttlefish for a female mate(University of Chicago Press, 2017-05-02) Allen, Justine J. ; Akkaynak, Derya ; Schnell, Alexandra K. ; Hanlon, Roger T.Male cuttlefish compete for females with a repertoire of visually dramatic behaviors. Laboratory experiments have explored this system in Sepia officinalis, but corroborative field data have eluded collection attempts by many researchers. While scuba diving in Turkey, we fortuitously filmed an intense sequence of consort/intruder behaviors in which the consort lost and then regained his female mate from the intruder. These agonistic bouts escalated in stages, leading to fast dramatic expression of the elaborate intense zebra display and culminating in biting and inking as the intruder male attempted a forced copulation of the female. When analyzed in the context of game theory, the patterns of fighting behavior were more consistent with mutual assessment than self-assessment of fighting ability. Additional observations of these behaviors in nature are needed to conclusively determine which models best represent conflict resolution, but our field observations agree with laboratory findings and provide a valuable perspective.
-
PreprintQuantification of cuttlefish (Sepia officinalis) camouflage : a study of color and luminance using in situ spectrometry( 2012-11-19) Akkaynak, Derya ; Allen, Justine J. ; Mathger, Lydia M. ; Chiao, Chuan-Chin ; Hanlon, Roger T.Cephalopods are renowned for their ability to adaptively camouflage on diverse backgrounds. Sepia officinalis camouflage body patterns have been characterized spectrally in the laboratory but not in the field due to the challenges of dynamic natural light fields and the difficulty of using spectrophotometric instruments underwater. To assess cuttlefish color match in their natural habitats, we studied the spectral properties of S. officinalis and their backgrounds on the Aegean coast of Turkey using point-by-point in situ spectrometry. Fifteen spectrometry datasets were collected from seven cuttlefish; radiance spectra from animal body components and surrounding substrates were measured at depths shallower than 5m. We quantified luminance and color contrast of cuttlefish components and background substrates in the eyes of hypothetical di- and trichromatic fish predators. Additionally, we converted radiance spectra to sRGB color space to simulate their in situ appearance to a human observer. Within the range of natural colors at our study site, cuttlefish closely matched the substrate spectra in a variety of body patterns. Theoretical calculations showed that this effect might be more pronounced at greater depths. We also showed that a non-biological method (“Spectral Angle Mapper”), commonly used for spectral shape similarity assessment in the field of remote sensing, shows moderate correlation to biological measures of color contrast. This performance is comparable to that of a traditional measure of spectral shape similarity, hue and chroma. This study is among the first to quantify color matching of camouflaged cuttlefish in the wild.
-
ArticleUse of commercial off-the-shelf digital cameras for scientific data acquisition and scene-specific color calibration(Optical Society of America, 2014-01-20) Akkaynak, Derya ; Treibitz, Tali ; Xiao, Bei ; Gurkan, Umut A. ; Allen, Justine J. ; Demirci, Utkan ; Hanlon, Roger T.Commercial off-the-shelf digital cameras are inexpensive and easy-to-use instruments that can be used for quantitative scientific data acquisition if images are captured in raw format and processed so that they maintain a linear relationship with scene radiance. Here we describe the image-processing steps required for consistent data acquisition with color cameras. In addition, we present a method for scene-specific color calibration that increases the accuracy of color capture when a scene contains colors that are not well represented in the gamut of a standard color-calibration target. We demonstrate applications of the proposed methodology in the fields of biomedical engineering, artwork photography, perception science, marine biology, and underwater imaging.