Murayama
Masafumi
Murayama
Masafumi
No Thumbnail Available
Search Results
Now showing
1 - 2 of 2
-
ArticleIntercomparison of XRF core scanning results from seven labs and approaches to practical calibration(American Geophysical Union, 2020-09-09) Dunlea, Ann G. ; Murray, Richard W. ; Tada, Ryuji ; Alvarez-Zarikian, Carlos A. ; Anderson, Chloe H. ; Gilli, Adrian ; Giosan, Liviu ; Gorgas, Thomas ; Hennekam, Rick ; Irino, Tomohisa ; Murayama, Masafumi ; Peterson, Larry C. ; Reichart, Gert-Jan ; Seki, Arisa ; Zheng, Hongbo ; Ziegler, MartinX‐ray fluorescence (XRF) scanning of marine sediment has the potential to yield near‐continuous and high‐resolution records of elemental abundances, which are often interpreted as proxies for paleoceanographic processes over different time scales. However, many other variables also affect scanning XRF measurements and convolute the quantitative calibrations of element abundances and comparisons of data from different labs. Extensive interlab comparisons of XRF scanning results and calibrations are essential to resolve ambiguities and to understand the best way to interpret the data produced. For this study, we sent a set of seven marine sediment sections (1.5 m each) to be scanned by seven XRF facilities around the world to compare the outcomes amidst a myriad of factors influencing the results. Results of raw element counts per second (cps) were different between labs, but element ratios were more comparable. Four of the labs also scanned a set of homogenized sediment pellets with compositions determined by inductively coupled plasma‐optical emission spectrometry (ICP‐OES) and ICP‐mass spectrometry (MS) to convert the raw XRF element cps to concentrations in two ways: a linear calibration and a log‐ratio calibration. Although both calibration curves are well fit, the results show that the log‐ratio calibrated data are significantly more comparable between labs than the linearly calibrated data. Smaller‐scale (higher‐resolution) features are often not reproducible between the different scans and should be interpreted with caution. Along with guidance on practical calibrations, our study recommends best practices to increase the quality of information that can be derived from scanning XRF to benefit the field of paleoceanography.
-
PreprintInnovative TEM-coupled approaches to study foraminiferal cells( 2017-10) Nomaki, Hidetaka ; LeKieffre, Charlotte ; Escrig, Stéphane ; Meibom, Anders ; Yagyu, Shinsuke ; Richardson, Elizabeth A. ; Matsuzaki, Takuya ; Murayama, Masafumi ; Geslin, Emmanuelle ; Bernhard, Joan M.Transmission electron microscope (TEM) observation has revealed much about the basic cell biology of foraminifera. Yet, there remains much we do not know about foraminiferal cytology and physiology, especially for smaller benthic foraminifera, which inhabit a wide range of habitats. Recently, some TEM-coupled approaches have been developed to study correlative foraminiferal ecology and physiology in detail: Fluorescently Labeled Embedded Core (FLEC)-TEM for observing foraminiferal life-position together with their cytoplasmic ultrastructure, micro-X-ray computed tomography (CT)-TEM for observing and reconstructing foraminiferal cytoplasm in three dimensions (3D), and TEM-Nanometer-scale secondary ion mass spectrometry (NanoSIMS) for mapping of elemental and isotopic compositions at sub-micrometer resolutions with known ultrastructure. In this contribution, we review and illustrate these recent advances of TEM-coupled methods.