Canonico
Barbara
Canonico
Barbara
No Thumbnail Available
Search Results
Now showing
1 - 2 of 2
-
ArticleForaminiferal ultrastructure: A perspective from fluorescent and fluorogenic probes(American Geophysical Union, 2019-08-22) Frontalini, Fabrizio ; Losada, Maria Teresa ; Toyofuku, Takashi ; Tyszka, Jarosław ; Goleń, Jan ; de Nooijer, Lennart ; Canonico, Barbara ; Cesarini, Erica ; Nagai, Yukiko ; Bickmeyer, Ulf ; Ikuta, Tetsuro ; Tsubaki, Remi ; Rodriguez, Celia Besteiro ; Al-Enezi, Eqbal ; Papa, Stefano ; Coccioni, Rodolfo ; Bijma, Jelle ; Bernhard, Joan M.Microscopy techniques have been widely applied to observe cellular ultrastructure. Most of these techniques, such as transmission electron microscopy, produce high‐resolution images, but they may require extensive preparation, hampering their application for in vivo examination. Other approaches, such as fluorescent and fluorogenic probes, can be applied not only to fixed specimens but also to living cells when the probes are nontoxic. Fluorescence‐based methods, which are generally relatively easy to use, allow visual and (semi)quantitative studies of the ultrastructural organization and processes of the cell under natural as well as manipulated conditions. To date, there are relatively few published studies on the nearly ubiquitous marine protistan group Foraminifera that have used fluorescent and fluorogenic probes, despite their huge potential. The aim of the present contribution is to document the feasible application of a wide array of these probes to foraminiferal biology. More specifically, we applied fluorescence‐based probes to study esterase activity, cell viability, calcium signaling, pH variation, reactive oxygen species, neutral and polar lipids, lipid droplets, cytoskeleton structures, Golgi complex, acidic vesicles, nuclei, and mitochondria in selected foraminiferal species.
-
ArticleMercury-pollution induction of intracellular lipid accumulation and lysosomal compartment amplification in the benthic foraminifer Ammonia parkinsoniana(Public Library of Science, 2016-09-07) Frontalini, Fabrizio ; Curzi, Davide ; Canonico, Barbara ; Giordano, Francesco M. ; De Matteis, Rita ; Bernhard, Joan M. ; Pieretti, Nadia ; Gu, Baohua ; Eskelsen, Jeremy ; Jubb, Aaron ; Zhao, Linduo ; Pierce, Eric M. ; Gobbi, Pietro ; Papa, Stefano ; Coccioni, RodolfoHeavy metals such as mercury (Hg) pose a significant health hazard through bioaccumulation and biomagnification. By penetrating cell membranes, heavy metal ions may lead to pathological conditions. Here we examined the responses of Ammonia parkinsoniana, a benthic foraminiferan, to different concentrations of Hg in the artificial sea water. Confocal images of untreated and treated specimens using fluorescent probes (Nile Red and Acridine Orange) provided an opportunity for visualizing the intracellular lipid accumulation and acidic compartment regulation. With increased Hg over time, we observed an increased number of lipid droplets, which may have acted as a detoxifying organelle where Hg is sequestered and biologically inactivated. Further, Hg seems to promote the proliferation of lysosomes both in terms of number and dimension that, at the highest level of Hg, resulted in cell death. We report, for the first time, the presence of Hg within the foraminiferal cell: at the basal part of pores, in the organic linings of the foramen/septa, and as cytoplasmic accumulations.