Cheadle Michael J.

No Thumbnail Available
Last Name
Cheadle
First Name
Michael J.
ORCID

Search Results

Now showing 1 - 5 of 5
  • Article
    Dynamic accretion beneath a slow-spreading ridge segment: IODP hole 1473A and the Atlantis Bank oceanic core complex
    (American Geophysical Union, 2019-11-07) Dick, Henry J. B. ; MacLeod, Christopher J. ; Blum, Peter ; Abe, Natsue ; Blackman, Donna K. ; Bowles, Julie A. ; Cheadle, Michael J. ; Cho, K. ; Ciazela, Jakub ; Deans, Jeremy ; Edgcomb, Virginia P. ; Ferrando, Carlotta ; France, Lydéric ; Ghosh, Biswajit ; Ildefonse, Benoit ; John, Barbara E. ; Kendrick, Mark A. ; Koepke, Juergen ; Leong, James ; Liu, Chuanzhou ; Ma, Qiang ; Morishita, Tomoaki ; Morris, Antony ; Natland, James H. ; Nozaka, Toshio ; Pluemper, Oliver ; Sanfilippo, Alessio ; Sylvan, Jason B. ; Tivey, Maurice A. ; Tribuzio, Riccardo ; Viegas, G.
    809 deep IODP Hole U1473A at Atlantis Bank, SWIR, is 2.2 km from 1,508‐m Hole 735B and 1.4 from 158‐m Hole 1105A. With mapping, it provides the first 3‐D view of the upper levels of a 660‐km2 lower crustal batholith. It is laterally and vertically zoned, representing a complex interplay of cyclic intrusion, and ongoing deformation, with kilometer‐scale upward and lateral migration of interstial melt. Transform wall dives over the gabbro‐peridotite contact found only evolved gabbro intruded directly into the mantle near the transform. There was no high‐level melt lens, rather the gabbros crystallized at depth, and then emplaced into the zone of diking by diapiric rise of a crystal mush followed by crystal‐plastic deformation and faulting. The residues to mass balance the crust to a parent melt composition lie at depth below the center of the massif—likely near the crust‐mantle boundary. Thus, basalts erupted to the seafloor from >1,550 mbsf. By contrast, the Mid‐Atlantic Ridge lower crust drilled at 23°N and at Atlantis Massif experienced little high‐temperature deformation and limited late‐stage melt transport. They contain primitive cumulates and represent direct intrusion, storage, and crystallization of parental MORB in thinner crust below the dike‐gabbro transition. The strong asymmetric spreading of the SWIR to the south was due to fault capture, with the northern rift valley wall faults cutoff by a detachment fault that extended across most of the zone of intrusion. This caused rapid migration of the plate boundary to the north, while the large majority of the lower crust to spread south unroofing Atlantis Bank and uplifting it into the rift mountains.
  • Article
    Nonvolcanic seafloor spreading and corner-flow rotation accommodated by extensional faulting at 15°N on the Mid-Atlantic Ridge : a structural synthesis of ODP Leg 209
    (American Geophysical Union, 2007-06-28) Schroeder, Timothy ; Cheadle, Michael J. ; Dick, Henry J. B. ; Faul, Ulrich ; Casey, John F. ; Kelemen, Peter B.
    Drilling during ODP Leg 209, dredging, and submersible dives have delineated an anomalous stretch of the Mid-Atlantic Ridge north and south of the 15°20′N Fracture Zone. The seafloor here consists dominantly of mantle peridotite with gabbroic intrusions that in places is covered by a thin, discontinuous extrusive volcanic layer. Thick lithosphere (10–20 km) in this region inhibits magma from reaching shallow levels beneath the ridge axis, thereby causing plate accretion to be accommodated by extensional faulting rather than magmatism. The bathymetry and complex fault relations in the drill-core suggest that mantle denudation and spreading are accommodated by a combination of high-displacement, rolling-hinge normal faults and secondary lower-displacement normal faults. These extensional faults must also accommodate corner flow rotation (up to 90°) of the upwelling mantle within the shallow lithosphere, consistent with remnant magnetic inclinations in denuded peridotite and gabbro from Leg 209 core that indicate up to 90° of sub-Curie-temperature rotation.
  • Article
    Mylonitic deformation at the Kane oceanic core complex : implications for the rheological behavior of oceanic detachment faults
    (John Wiley & Sons, 2013-08-28) Hansen, Lars N. ; Cheadle, Michael J. ; John, Barbara E. ; Swapp, Susan M. ; Dick, Henry J. B. ; Tucholke, Brian E. ; Tivey, Maurice A.
    The depth extent, strength, and composition of oceanic detachment faults remain poorly understood because the grade of deformation-related fabrics varies widely among sampled oceanic core complexes (OCCs). We address this issue by analyzing fault rocks collected from the Kane oceanic core complex at 23°30′N on the Mid-Atlantic Ridge. A portion of the sample suite was collected from a younger fault scarp that cuts the detachment surface and exposes the interior of the most prominent dome. The style of deformation was assessed as a function of proximity to the detachment surface, revealing a ∼450 m thick zone of high-temperature mylonitization overprinted by a ∼200 m thick zone of brittle deformation. Geothermometry of deformed gabbros demonstrates that crystal-plastic deformation occurred at temperatures >700°C. Analysis of the morphology of the complex in conjunction with recent thermochronology suggests that deformation initiated at depths of ∼7 km. Thus we suggest the detachment system extended into or below the brittle-plastic transition (BPT). Microstructural evidence suggests that gabbros and peridotites with high-temperature fabrics were dominantly deforming by dislocation-accommodated processes and diffusion creep. Recrystallized grain size piezometry yields differential stresses consistent with those predicted by dry-plagioclase flow laws. The temperature and stress at the BPT determined from laboratory-derived constitutive models agree well with the lowest temperatures and highest stresses estimated from gabbro mylonites. We suggest that the variation in abundance of mylonites among oceanic core complexes can be explained by variation in the depth of the BPT, which depends to a first order on the thermal structure and water content of newly forming oceanic lithosphere.
  • Article
    Evolution of the Southwest Indian Ridge from 55°45′E to 62°E : changes in plate-boundary geometry since 26 Ma
    (American Geophysical Union, 2007-06-23) Baines, A. Graham ; Cheadle, Michael J. ; Dick, Henry J. B. ; Scheirer, Allegra Hosford ; John, Barbara E. ; Kusznir, Nick J. ; Matsumoto, Takeshi
    From 55°45′E to 58°45′E and from 60°30′E to 62°00′E, the ultraslow-spreading Southwest Indian Ridge (SWIR) consists of magmatic spreading segments separated by oblique amagmatic spreading segments, transform faults, and nontransform discontinuities. Off-axis magnetic and multibeam bathymetric data permit investigation of the evolution of this part of the SWIR. Individual magmatic segments show varying magnitudes and directions of asymmetric spreading, which requires that the shape of the plate boundary has changed significantly over time. In particular, since 26 Ma the Atlantis II transform fault grew by 90 km to reach 199 km, while a 45-km-long transform fault at 56°30′E shrank to become an 11 km offset nontransform discontinuity. Conversely, an oblique amagmatic segment at the center of a first-order spreading segment shows little change in orientation with time. These changes are consistent with the clockwise rotation of two ~450-km-wide first-order spreading segments between the Gallieni and Melville transform faults (52–60°E) to become more orthogonal to spreading. We suggest that suborthogonal first-order spreading segments reflect a stable configuration for mid-ocean ridges that maximizes upwelling rates in the asthenospheric mantle and results in a hotter and weaker ridge-axis that can more easily accommodate seafloor spreading.
  • Article
    Making use of relicts: brisingid seastars aggregate on hydrothermally inactive sulfide chimneys near black smokers
    (Frontiers Media, 2022-02-17) Woods, Daniel ; Cheadle, Michael J. ; John, Barbara E. ; German, Christopher R. ; Van Dover, Cindy L.
    When hydrothermal activity ceases at black-smoker chimneys on mid-ocean ridges, populations of associated invertebrates hosting chemoautotrophic endosymbionts decline and then disappear, but the chimneys can persist on the seabed as relicts. Suspension-feeding brisingid seastars colonize hydrothermally inactive (relict) chimneys on the East Pacific Rise (EPR), though their distribution relative to available hard substrata and proximity to hydrothermal activity is poorly documented. In this study, brisingid abundance on sulfide and basalt substrata was assessed along an ∼3,700 m ROV Jason II transect at the summit of Pito Seamount (SE Pacific; ∼2,275 m). Brisingids were non-randomly distributed, with highest densities (up to ∼300 m–2) on relict sulfides chimneys near active black smokers. Brisingids were relatively uncommon on basalt substrata, and absent on black smokers. We infer that both relict sulfide structures and proximity to black smokers play key roles in the maintenance of dense brisingid populations on Pito Seamount and in similar environments on the EPR. Our observations suggest that experimental introduction of “artificial” relict chimneys providing microtopographic relief could test whether such an approach might mitigate potential impacts of mineral extraction on populations of suspension-feeding invertebrates.