Burgaud Gaëtan

No Thumbnail Available
Last Name
Burgaud
First Name
Gaëtan
ORCID
0000-0001-7741-4429

Search Results

Now showing 1 - 6 of 6
  • Article
    Environmental factors shaping bacterial, archaeal and fungal community structure in hydrothermal sediments of Guaymas Basin, Gulf of California
    (Public Library of Science, 2021-09-08) Ramírez, Gustavo A. ; Mara, Paraskevi ; Sehein, Taylor R. ; Wegener, Gunter ; Chambers, Christopher R. ; Joye, Samantha B. ; Peterson, Richard N. ; Philippe, Aurélie ; Burgaud, Gaëtan ; Edgcomb, Virginia P. ; Teske, Andreas P.
    The flanking regions of Guaymas Basin, a young marginal rift basin located in the Gulf of California, are covered with thick sediment layers that are hydrothermally altered due to magmatic intrusions. To explore environmental controls on microbial community structure in this complex environment, we analyzed site- and depth-related patterns of microbial community composition (bacteria, archaea, and fungi) in hydrothermally influenced sediments with different thermal conditions, geochemical regimes, and extent of microbial mats. We compared communities in hot hydrothermal sediments (75-100°C at ~40 cm depth) covered by orange-pigmented Beggiatoaceae mats in the Cathedral Hill area, temperate sediments (25-30°C at ~40 cm depth) covered by yellow sulfur precipitates and filamentous sulfur oxidizers at the Aceto Balsamico location, hot sediments (>115°C at ~40 cm depth) with orange-pigmented mats surrounded by yellow and white mats at the Marker 14 location, and background, non-hydrothermal sediments (3.8°C at ~45 cm depth) overlain with ambient seawater. Whereas bacterial and archaeal communities are clearly structured by site-specific in-situ thermal gradients and geochemical conditions, fungal communities are generally structured by sediment depth. Unexpectedly, chytrid sequence biosignatures are ubiquitous in surficial sediments whereas deeper sediments contain diverse yeasts and filamentous fungi. In correlation analyses across different sites and sediment depths, fungal phylotypes correlate to each other to a much greater degree than Bacteria and Archaea do to each other or to fungi, further substantiating that site-specific in-situ thermal gradients and geochemical conditions that control bacteria and archaea do not extend to fungi.
  • Article
    Highlighting the biotechnological potential of deep oceanic crust fungi through the prism of their antimicrobial activity
    (MDPI, 2021-07-24) Quemener, Maxence ; Dayras, Marie ; Frotté, Nicolas ; Debaets, Stella ; Le Meur, Christophe ; Barbier, Georges ; Edgcomb, Virginia P. ; Mehiri, Mohamed ; Burgaud, Gaëtan
    Among the different tools to address the antibiotic resistance crisis, bioprospecting in complex uncharted habitats to detect novel microorganisms putatively producing original antimicrobial compounds can definitely increase the current therapeutic arsenal of antibiotics. Fungi from numerous habitats have been widely screened for their ability to express specific biosynthetic gene clusters (BGCs) involved in the synthesis of antimicrobial compounds. Here, a collection of unique 75 deep oceanic crust fungi was screened to evaluate their biotechnological potential through the prism of their antimicrobial activity using a polyphasic approach. After a first genetic screening to detect specific BGCs, a second step consisted of an antimicrobial screening that tested the most promising isolates against 11 microbial targets. Here, 12 fungal isolates showed at least one antibacterial and/or antifungal activity (static or lytic) against human pathogens. This analysis also revealed that Staphylococcus aureus ATCC 25923 and Enterococcus faecalis CIP A 186 were the most impacted, followed by Pseudomonas aeruginosa ATCC 27853. A specific focus on three fungal isolates allowed us to detect interesting activity of crude extracts against multidrug-resistant Staphylococcus aureus. Finally, complementary mass spectrometry (MS)-based molecular networking analyses were performed to putatively assign the fungal metabolites and raise hypotheses to link them to the observed antimicrobial activities.
  • Article
    Revisiting the pink-red pigmented basidiomycete mirror yeast of the phyllosphere
    (John Wiley & Sons, 2016-05-10) Cobban, Alec ; Edgcomb, Virginia P. ; Burgaud, Gaëtan ; Repeta, Daniel J. ; Leadbetter, Edward R.
    By taking advantage of the ballistoconidium-forming capabilities of members of the genus Sporobolomyces, we recovered ten isolates from deciduous tree leaves collected from Vermont and Washington, USA. Analysis of the small subunit ribosomal RNA gene and the D1/D2 domain of the large subunit ribosomal RNA gene indicate that all isolates are closely related. Further analysis of their physiological attributes shows that all were similarly pigmented yeasts capable of growth under aerobic and microaerophilic conditions, all were tolerant of repeated freezing and thawing, minimally tolerant to elevated temperature and desiccation, and capable of growth in liquid or on solid media containing pectin or galacturonic acid. The scientific literature on ballistoconidium-forming yeasts indicates that they are a polyphyletic group. Isolates of Sporobolomyces from two geographically separated sites show almost identical phenotypic and physiological characteristics and a monophyly with a broad group of differently named Sporobolomyces/Sporidiobolus species based on both small subunit ribosomal RNA (SSU rRNA) and D1/D2 domains of the LSU rRNA gene sequences.
  • Article
    Fungi in the Marine Environment: Open Questions and Unsolved Problems
    (American Society for Microbiology, 2019-03-05) Amend, Anthony ; Burgaud, Gaëtan ; Cunliffe, Michael ; Edgcomb, Virginia P. ; Ettinger, Cassandra L. ; Gutiérrez, M. H. ; Heitman, Joseph ; Hom, Erik F. Y. ; Ianiri, Giuseppe ; Jones, Adam C. ; Kagami, Maiko ; Picard, Kathryn T. ; Quandt, C. Alisha ; Raghukumar, Seshagiri ; Riquelme, Mertixell ; Stajich, Jason ; Vargas-Muñiz, José ; Walker, Allison K. ; Yarden, Oded ; Gladfelter, Amy S.
    Terrestrial fungi play critical roles in nutrient cycling and food webs and can shape macroorganism communities as parasites and mutualists. Although estimates for the number of fungal species on the planet range from 1.5 to over 5 million, likely fewer than 10% of fungi have been identified so far. To date, a relatively small percentage of described species are associated with marine environments, with ∼1,100 species retrieved exclusively from the marine environment. Nevertheless, fungi have been found in nearly every marine habitat explored, from the surface of the ocean to kilometers below ocean sediments. Fungi are hypothesized to contribute to phytoplankton population cycles and the biological carbon pump and are active in the chemistry of marine sediments. Many fungi have been identified as commensals or pathogens of marine animals (e.g., corals and sponges), plants, and algae. Despite their varied roles, remarkably little is known about the diversity of this major branch of eukaryotic life in marine ecosystems or their ecological functions. This perspective emerges from a Marine Fungi Workshop held in May 2018 at the Marine Biological Laboratory in Woods Hole, MA. We present the state of knowledge as well as the multitude of open questions regarding the diversity and function of fungi in the marine biosphere and geochemical cycles.
  • Article
    Fungal and prokaryotic activities in the marine subsurface biosphere at Peru Margin and Canterbury Basin inferred from RNA-based analyses and microscopy
    (Fromtiers Media, 2016-06-09) Pachiadaki, Maria G. ; Redou, Vanessa ; Beaudoin, David J. ; Burgaud, Gaëtan ; Edgcomb, Virginia P.
    The deep sedimentary biosphere, extending 100s of meters below the seafloor harbors unexpected diversity of Bacteria, Archaea, and microbial eukaryotes. Far less is known about microbial eukaryotes in subsurface habitats, albeit several studies have indicated that fungi dominate microbial eukaryotic communities and fungal molecular signatures (of both yeasts and filamentous forms) have been detected in samples as deep as 1740 mbsf. Here, we compare and contrast fungal ribosomal RNA gene signatures and whole community metatranscriptomes present in sediment core samples from 6 and 95 mbsf from Peru Margin site 1229A and from samples from 12 and 345 mbsf from Canterbury Basin site U1352. The metatranscriptome analyses reveal higher relative expression of amino acid and peptide transporters in the less nutrient rich Canterbury Basin sediments compared to the nutrient rich Peru Margin, and higher expression of motility genes in the Peru Margin samples. Higher expression of genes associated with metals transporters and antibiotic resistance and production was detected in Canterbury Basin sediments. A poly-A focused metatranscriptome produced for the Canterbury Basin sample from 345 mbsf provides further evidence for active fungal communities in the subsurface in the form of fungal-associated transcripts for metabolic and cellular processes, cell and membrane functions, and catalytic activities. Fungal communities at comparable depths at the two geographically separated locations appear dominated by distinct taxa. Differences in taxonomic composition and expression of genes associated with particular metabolic activities may be a function of sediment organic content as well as oceanic province. Microscopic analysis of Canterbury Basin sediment samples from 4 and 403 mbsf produced visualizations of septate fungal filaments, branching fungi, conidiogenesis, and spores. These images provide another important line of evidence supporting the occurrence and activity of fungi in the deep subseafloor biosphere.
  • Article
    Planktonic marine fungi: A review
    (American Geophysical Union, 2024-03-03) Peng, Xuefeng ; Amend, Anthony S. ; Baltar, Federico ; Blanco-Bercial, Leocadio ; Breyer, Eva ; Burgaud, Gaetan ; Cunliffe, Michael ; Edgcomb, Virginia P. ; Grossart, Hans-Peter ; Mara, Paraskevi ; Masigol, Hossein ; Pang, Ka-Lai ; Retter, Alice ; Roberts, Cordelia ; van Bleijswijk, Judith ; Walker, Allison K. ; Whitner, Syrena
    Fungi in marine ecosystems play crucial roles as saprotrophs, parasites, and pathogens. The definition of marine fungi has evolved over the past century. Currently, “marine fungi” are defined as any fungi recovered repeatedly from marine habitats that are able to grow and/or sporulate in marine environments, form symbiotic relationships with other marine organisms, adapt and evolve at the genetic level, or are active metabolically in marine environments. While there are a number of recent reviews synthesizing our knowledge derived from over a century of research on marine fungi, this review article focuses on the state of knowledge on planktonic marine fungi from the coastal and open ocean, defined as fungi that are in suspension or attached to particles, substrates or in association with hosts in the pelagic zone of the ocean, and their roles in remineralization of organic matter and major biogeochemical cycles. This review differs from previous ones by focusing on biogeochemical impacts of planktonic marine fungi and methodological considerations for investigating their diversity and ecological functions. Importantly, we point out gaps in our knowledge and the potential methodological biases that might have contributed to these gaps. Finally, we highlight recommendations that will facilitate future studies of marine fungi. This article first provides a brief overview of the diversity of planktonic marine fungi, followed by a discussion of the biogeochemical impacts of planktonic marine fungi, and a wide range of methods that can be used to study marine fungi.