Emerson
David
Emerson
David
No Thumbnail Available
Search Results
Now showing
1 - 9 of 9
-
DatasetFe(II) concentrations over time in iron oxidizing bacteria cultures.(Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu, 2019-03-26) Girguis, Peter ; Emerson, DavidFe(II) concentrations over time in iron oxidizing bacteria cultures. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/709440
-
DatasetOxygen consumption rates/zero valent iron dissolution of FeOB with kanamycin addition - replacement samples(Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu, 2019-03-26) Girguis, Peter ; Emerson, DavidOxygen consumption rates/zero valent iron dissolution of FeOB with kanamycin addition - replacement samples For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/709573
-
DatasetPore water and solid phase iron geochemical data from a coastal Maine intertidal mudflat from November 2015 to November 2016(Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu, 2019-03-15) Emerson, David ; Girguis, PeterPore water and solid phase iron geochemical data from a coastal Maine intertidal mudflat from November 2015 to November 2016. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/737962
-
ArticleMariprofundus ferrooxydans PV-1 the First Genome of a Marine Fe(II) Oxidizing Zetaproteobacterium(Public Library of Science, 2011-09-23) Singer, Esther ; Emerson, David ; Webb, Eric A. ; Barco, Roman A. ; Kuenen, J. Gijs ; Nelson, William C. ; Chan, Clara S. ; Comolli, Luis R. ; Ferriera, Steve ; Johnson, Justin ; Heidelberg, John F. ; Edwards, Katrina J.Mariprofundus ferrooxydans PV-1 has provided the first genome of the recently discovered Zetaproteobacteria subdivision. Genome analysis reveals a complete TCA cycle, the ability to fix CO2, carbon-storage proteins and a sugar phosphotransferase system (PTS). The latter could facilitate the transport of carbohydrates across the cell membrane and possibly aid in stalk formation, a matrix composed of exopolymers and/or exopolysaccharides, which is used to store oxidized iron minerals outside the cell. Two-component signal transduction system genes, including histidine kinases, GGDEF domain genes, and response regulators containing CheY-like receivers, are abundant and widely distributed across the genome. Most of these are located in close proximity to genes required for cell division, phosphate uptake and transport, exopolymer and heavy metal secretion, flagellar biosynthesis and pilus assembly suggesting that these functions are highly regulated. Similar to many other motile, microaerophilic bacteria, genes encoding aerotaxis as well as antioxidant functionality (e.g., superoxide dismutases and peroxidases) are predicted to sense and respond to oxygen gradients, as would be required to maintain cellular redox balance in the specialized habitat where M. ferrooxydans resides. Comparative genomics with other Fe(II) oxidizing bacteria residing in freshwater and marine environments revealed similar content, synteny, and amino acid similarity of coding sequences potentially involved in Fe(II) oxidation, signal transduction and response regulation, oxygen sensation and detoxification, and heavy metal resistance. This study has provided novel insights into the molecular nature of Zetaproteobacteria.
-
ArticleA novel lineage of proteobacteria involved in formation of marine Fe-oxidizing microbial mat communities(Public Library of Science, 2007-08-01) Emerson, David ; Rentz, Jeremy A. ; Lilburn, Timothy G. ; Davis, Richard E. ; Aldrich, Henry ; Chan, Clara S. ; Moyer, Craig L.For decades it has been recognized that neutrophilic Fe-oxidizing bacteria (FeOB) are associated with hydrothermal venting of Fe(II)-rich fluids associated with seamounts in the world's oceans. The evidence was based almost entirely on the mineralogical remains of the microbes, which themselves had neither been brought into culture or been assigned to a specific phylogenetic clade. We have used both cultivation and cultivation-independent techniques to study Fe-rich microbial mats associated with hydrothermal venting at Loihi Seamount, a submarine volcano. Using gradient enrichment techniques, two iron-oxidizing bacteria, strains PV-1 and JV-1, were isolated. Chemolithotrophic growth was observed under microaerobic conditions; Fe(II) and Fe0 were the only energy sources that supported growth. Both strains produced filamentous stalk-like structures composed of multiple nanometer sized fibrils of Fe-oxyhydroxide. These were consistent with mineralogical structures found in the iron mats. Phylogenetic analysis of the small subunit (SSU) rRNA gene demonstrated that strains PV-1 and JV-1 were identical and formed a monophyletic group deeply rooted within the Proteobacteria. The most similar sequence (85.3% similarity) from a cultivated isolate came from Methylophaga marina. Phylogenetic analysis of the RecA and GyrB protein sequences confirmed that these strains are distantly related to other members of the Proteobacteria. A cultivation-independent analysis of the SSU rRNA gene by terminal-restriction fragment (T-RF) profiling showed that this phylotype was most common in a variety of microbial mats collected at different times and locations at Loihi. On the basis of phylogenetic and physiological data, it is proposed that isolate PV-1T ( = 1ATCC BAA-1019: JCM 14766) represents the type strain of a novel species in a new genus, Mariprofundus ferrooxydans gen. nov., sp. nov. Furthermore, the strain is the first cultured representative of a new candidatus class of the Proteobacteria that is widely distributed in deep-sea environments, Candidatus ζ (zeta)-Proteobacteria cl. nov.
-
ArticleMicrobial iron mats at the Mid-Atlantic Ridge and evidence that Zetaproteobacteria may be restricted to iron-oxidizing marine systems(Public Library of Science, 2015-03-11) Scott, Jarrod J. ; Breier, John A. ; Luther, George W. ; Emerson, DavidChemolithoautotrophic iron-oxidizing bacteria play an essential role in the global iron cycle. Thus far, the majority of marine iron-oxidizing bacteria have been identified as Zetaproteobacteria, a novel class within the phylum Proteobacteria. Marine iron-oxidizing microbial communities have been found associated with volcanically active seamounts, crustal spreading centers, and coastal waters. However, little is known about the presence and diversity of iron-oxidizing communities at hydrothermal systems along the slow crustal spreading center of the Mid-Atlantic Ridge. From October to November 2012, samples were collected from rust-colored mats at three well-known hydrothermal vent systems on the Mid-Atlantic Ridge (Rainbow, Trans-Atlantic Geotraverse, and Snake Pit) using the ROV Jason II. The goal of these efforts was to determine if iron-oxidizing Zetaproteobacteria were present at sites proximal to black smoker vent fields. Small, diffuse flow venting areas with high iron(II) concentrations and rust-colored microbial mats were observed at all three sites proximal to black smoker chimneys. A novel, syringe-based precision sampler was used to collect discrete microbial iron mat samples at the three sites. The presence of Zetaproteobacteria was confirmed using a combination of 16S rRNA pyrosequencing and single-cell sorting, while light micros-copy revealed a variety of iron-oxyhydroxide structures, indicating that active iron-oxidizing communities exist along the Mid-Atlantic Ridge. Sequencing analysis suggests that these iron mats contain cosmopolitan representatives of Zetaproteobacteria, but also exhibit diversity that may be uncommon at other iron-rich marine sites studied to date. A meta-analysis of publically available data encompassing a variety of aquatic habitats indicates that Zetaproteobacteria are rare if an iron source is not readily available. This work adds to the growing understanding of Zetaproteobacteria ecology and suggests that this organism is likely locally restricted to iron-rich marine environments but may exhibit wide-scale geographic distribution, further underscoring the importance of Zetaproteobacteria in global iron cycling.
-
ArticleUltra-diffuse hydrothermal venting supports Fe-oxidizing bacteria and massive umber deposition at 5000 m off Hawaii(Nature Publishing Group, 2011-05-05) Edwards, Katrina J. ; Glazer, Brian T. ; Rouxel, Olivier J. ; Bach, Wolfgang ; Emerson, David ; Toner, Brandy M. ; Chan, Clara S. ; Tebo, Bradley M. ; Staudigel, Hubert ; Moyer, Craig L.A novel hydrothermal field has been discovered at the base of Lōihi Seamount, Hawaii, at 5000 mbsl. Geochemical analyses demonstrate that ‘FeMO Deep’, while only 0.2 °C above ambient seawater temperature, derives from a distal, ultra-diffuse hydrothermal source. FeMO Deep is expressed as regional seafloor seepage of gelatinous iron- and silica-rich deposits, pooling between and over basalt pillows, in places over a meter thick. The system is capped by mm to cm thick hydrothermally derived iron-oxyhydroxide- and manganese-oxide-layered crusts. We use molecular analyses (16S rDNA-based) of extant communities combined with fluorescent in situ hybridizations to demonstrate that FeMO Deep deposits contain living iron-oxidizing Zetaproteobacteria related to the recently isolated strain Mariprofundus ferroxydans. Bioenergetic calculations, based on in-situ electrochemical measurements and cell counts, indicate that reactions between iron and oxygen are important in supporting chemosynthesis in the mats, which we infer forms a trophic base of the mat ecosystem. We suggest that the biogenic FeMO Deep hydrothermal deposit represents a modern analog for one class of geological iron deposits known as ‘umbers’ (for example, Troodos ophilolites, Cyprus) because of striking similarities in size, setting and internal structures.
-
DatasetOxygen consumption rates/zero valen iron dissolution of FeOB (Ferrozine assay) with Kanamycin addition(Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu, 2019-03-26) Girguis, Peter ; Emerson, DavidOxygen consumption rates/zero valen iron dissolution of FeOB (Ferrozine assay) with Kanamycin addition For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/709543
-
DatasetLaboratory experiment data describing oxygen consumption of two strains of Mariprofundus ferrooxydans at two oxygen concentrations and one temperature (Sedimentary Iron Cycle project)(Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu, 2019-06-06) Girguis, Peter ; Emerson, David ; Johnston, DavidLaboratory experiment data describing oxygen consumption of two strains of Mariprofundus ferrooxydans at two oxygen concentrations and one temperature (Sedimentary Iron Cycle project) For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/650324