Wei
Meng
Wei
Meng
No Thumbnail Available
Search Results
Now showing
1 - 3 of 3
-
ArticleA slow slip event in the south central Alaska Subduction Zone and related seismicity anomaly(American Geophysical Union, 2012-08-11) Wei, Meng ; McGuire, Jeffrey J. ; Richardson, ElizaWe detected a slow slip event in the south central Alaska Subduction Zone by analyzing continuous GPS data from the Plate Boundary Observatory (PBO) network. The slow slip event started in early 2010 at a depth of 35 km beneath the Cook Inlet, near the down-dip end of the locked zone, and is ongoing as of November 2011 with an accumulated magnitude of Mw 6.9. Analysis of the earthquake catalog in the same area using the stochastic Epidemic Type Aftershock Sequence model (ETAS) shows a small but detectable seismicity increase during the slow slip event. We also find a change in seismicity rate around 1998, that may suggest an earlier slow slip event in the same region. Slow slip events in Alaska appear more widespread than previously thought but have remained undetected due to their long durations, the time intervals between them, and the limited time records from the continuous GPS.
-
PreprintDynamic triggering of creep events in the Salton Trough, Southern California by regional M≥5.4M≥5.4 earthquakes constrained by geodetic observations and numerical simulations( 2015-06) Wei, Meng ; Liu, Yajing ; Kaneko, Yoshihiro ; McGuire, Jeffrey J. ; Bilham, RogerSince a regional earthquake in 1951, shallow creep events on strike-slip faults within the Salton Trough, Southern California have been triggered at least 10 times by M ≥ 5.4 earthquakes within 200 km. The high earthquake and creep activity and the long history of digital recording within the Salton Trough region provide a unique opportunity to study the mechanism of creep event triggering by nearby earthquakes. Here, we document the history of fault creep events on the Superstition Hills Fault based on data from creepmeters, InSAR, and field surveys since 1988. We focus on a subset of these creep events that were triggered by significant nearby earthquakes. We model these events by adding realistic static and dynamic perturbations to a theoretical fault model based on rate- and state-dependent friction. We find that the static stress changes from the causal earthquakes are less than 0.1 MPa and too small to instantaneously trigger creep events. In contrast, we can reproduce the characteristics of triggered slip with dynamic perturbations alone. The instantaneous triggering of creep events depends on the peak and the time-integrated amplitudes of the dynamic Coulomb stress change. Based on observations and simulations, the stress change amplitude required to trigger a creep event of 0.01 mm surface slip is about 0.6 MPa. This threshold is at least an order of magnitude larger than the reported triggering threshold of non-volcanic tremors (2-60 KPa) and earthquakes in geothermal fields (5 KPa) and near shale gas production sites (0.2-0.4 kPa), which may result from differences in effective normal stress, fault friction, the density of nucleation sites in these systems, or triggering mechanisms. We conclude that shallow frictional heterogeneity can explain both the spontaneous and dynamically triggered creep events on the Superstition Hills Fault.
-
ArticleThe Mw 6.5 offshore Northern California earthquake of 10 January 2010 : ordinary stress drop on a high-strength fault(John Wiley & Sons, 2014-09-22) Wei, Meng ; McGuire, Jeffrey J.The 10 January 2010 Mw 6.5 earthquake offshore Northern California is one of the first intraplate earthquakes in oceanic lithosphere to be well captured by a GPS network. It presents an opportunity to evaluate rupture mechanics on a high-strength fault. Static inversion of the coseismic displacements shows that the slip peaks at the same depth as the expected strength envelope, where the differential stresses can be as high as 600 MPa. Laboratory experiments on peridotite predict dramatic dynamic weakening at these conditions. The observed ordinary stress drop, 2–20 MPa, may indicate that the lithosphere is much weaker than strength envelope predicts or that the failure mechanisms seen in the laboratory are not occurring during the rupture. The GPS observations show very little postseismic signal indicating that if a shear zone exists beneath the coseismic rupture, it operates at significantly greater stress levels than the coseismic stress change.