de Cuevas
Beverly
de Cuevas
Beverly
No Thumbnail Available
Search Results
Now showing
1 - 2 of 2
-
ArticleEvaluation of Arctic sea ice thickness simulated by Arctic Ocean Model Intercomparison Project models(American Geophysical Union, 2012-03-15) Johnson, Mark ; Proshutinsky, Andrey ; Aksenov, Yevgeny ; Nguyen, An T. ; Lindsay, Ron ; Haas, Christian ; Zhang, Jinlun ; Diansky, Nikolay ; Kwok, Ron ; Maslowski, Wieslaw ; Hakkinen, Sirpa M. A. ; Ashik, Igor M. ; de Cuevas, BeverlySix Arctic Ocean Model Intercomparison Project model simulations are compared with estimates of sea ice thickness derived from pan-Arctic satellite freeboard measurements (2004–2008); airborne electromagnetic measurements (2001–2009); ice draft data from moored instruments in Fram Strait, the Greenland Sea, and the Beaufort Sea (1992–2008) and from submarines (1975–2000); and drill hole data from the Arctic basin, Laptev, and East Siberian marginal seas (1982–1986) and coastal stations (1998–2009). Despite an assessment of six models that differ in numerical methods, resolution, domain, forcing, and boundary conditions, the models generally overestimate the thickness of measured ice thinner than ∼2 m and underestimate the thickness of ice measured thicker than about ∼2 m. In the regions of flat immobile landfast ice (shallow Siberian Seas with depths less than 25–30 m), the models generally overestimate both the total observed sea ice thickness and rates of September and October ice growth from observations by more than 4 times and more than one standard deviation, respectively. The models do not reproduce conditions of fast ice formation and growth. Instead, the modeled fast ice is replaced with pack ice which drifts, generating ridges of increasing ice thickness, in addition to thermodynamic ice growth. Considering all observational data sets, the better correlations and smaller differences from observations are from the Estimating the Circulation and Climate of the Ocean, Phase II and Pan-Arctic Ice Ocean Modeling and Assimilation System models.
-
ArticleArctic pathways of Pacific Water : Arctic Ocean Model Intercomparison experiments(John Wiley & Sons, 2016-01-08) Aksenov, Yevgeny ; Karcher, Michael ; Proshutinsky, Andrey ; Gerdes, Rudiger ; de Cuevas, Beverly ; Golubeva, Elena ; Kauker, Frank ; Nguyen, An T. ; Platov, Gennady A. ; Wadley, Martin ; Watanabe, Eiji ; Coward, Andrew C. ; Nurser, A. J. GeorgePacific Water (PW) enters the Arctic Ocean through Bering Strait and brings in heat, fresh water, and nutrients from the northern Bering Sea. The circulation of PW in the central Arctic Ocean is only partially understood due to the lack of observations. In this paper, pathways of PW are investigated using simulations with six state-of-the art regional and global Ocean General Circulation Models (OGCMs). In the simulations, PW is tracked by a passive tracer, released in Bering Strait. Simulated PW spreads from the Bering Strait region in three major branches. One of them starts in the Barrow Canyon, bringing PW along the continental slope of Alaska into the Canadian Straits and then into Baffin Bay. The second begins in the vicinity of the Herald Canyon and transports PW along the continental slope of the East Siberian Sea into the Transpolar Drift, and then through Fram Strait and the Greenland Sea. The third branch begins near the Herald Shoal and the central Chukchi shelf and brings PW into the Beaufort Gyre. In the models, the wind, acting via Ekman pumping, drives the seasonal and interannual variability of PW in the Canadian Basin of the Arctic Ocean. The wind affects the simulated PW pathways by changing the vertical shear of the relative vorticity of the ocean flow in the Canada Basin.