Yang
Shun-Chung
Yang
Shun-Chung
No Thumbnail Available
Search Results
Now showing
1 - 3 of 3
-
DatasetDissolved concentrations of nickel and copper from bottle samples collected on Leg 2 (Hilo, HI to Papeete, French Polynesia) of the US GEOTRACES Pacific Meridional Transect (PMT) cruise (GP15, RR1815) on R/V Roger Revelle from October to November 2018(Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu, 2022-12-19) Bian, Xiaopeng ; Yang, Shun-Chung ; John, Seth G.This dataset contains dissolved concentrations of nickel (Ni) and copper (Cu) from bottle samples. The samples were collected during the U.S. GEOTRACES PMT cruise aboard the R/V Roger Revelle (RR1815 from October 24th to November 23rd of 2018). The dataset also includes station number, date, time, latitude, longitude, event number, event description, sample number, depth, and data quality flag. The data from Leg 1 of this transect, RR1814, are available as a related dataset. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/885335
-
DatasetDissolved concentrations of nickel and copper from bottle samples collected on Leg 1 (Seattle, WA to Hilo, HI) of the US GEOTRACES Pacific Meridional Transect (PMT) cruise (GP15, RR1814) on R/V Roger Revelle from September to October 2018(Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu, 2022-12-19) Bian, Xiaopeng ; Yang, Shun-Chung ; John, Seth G.This dataset contains dissolved concentrations of nickel (Ni) and copper (Cu) from bottle samples. The samples were collected during the U.S. GEOTRACES PMT cruise aboard the R/V Roger Revelle (RR1814 from September 18th to October 21st of 2018). The dataset also includes station number, date, time, latitude, longitude, event number, event description, sample number, depth, and data quality flag. The data from Leg 2 of this transect, RR1815, are available as a related dataset. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/885319
-
ArticleRecycling of dissolved iron in the North Pacific Subtropical Gyre(Association for the Sciences of Limnology and Oceanography, 2022-09-08) Hawco, Nicholas J. ; Yang, Shun-Chung ; Pinedo-Gonzalez, Paulina ; Black, Erin E. ; Kenyon, Jennifer ; Ferrón, Sara ; Bian, Xiaopeng ; John, Seth G.The importance of iron as a limiting nutrient in the open ocean is widely recognized, but there is substantial uncertainty about the rate that it cycles in the marine environment. Here, we combine measurements from the water column, sediment traps, and incubations to constrain Fe turnover during summer at Station ALOHA in the North Pacific Subtropical Gyre. Using low levels of 57Fe–58Fe double spike, measured with high precision by multi-collector inductively coupled plasma mass spectrometry, we find Fe uptake rates of 30–60 pM d−1 throughout the euphotic zone. Dissolved Fe turnover times are estimated at 10–15 d in the mixed layer and 1–3 d near the deep chlorophyll maximum. Aerosol Fe supply inferred from a thorium isotope mass balance indicates that the dissolved Fe residence time is approximately 6 months in the upper euphotic zone (0–75 m), relative to external sources, and 2 months in the lower euphotic zone (75–150 m). To reconcile these observations, the average Fe atom must be recycled over 25 times at Station ALOHA in both the upper and lower euphotic zones (an “Fe ratio” equal to 0.04 and 0.03, respectively), a level of conservation that has only been documented in Fe-limited regions thus far. At steady state, this scenario requires an aerosol Fe solubility of 4.5%, which is similar to dissolution experiments from Pacific Ocean aerosols. Our results suggest that the oligotrophic ocean is capable of recycling iron efficiently even when these ecosystems are not demonstrably iron-limited.