Arnulf
Adrien F.
Arnulf
Adrien F.
No Thumbnail Available
Search Results
Now showing
1 - 3 of 3
-
ArticleStacked magma lenses beneath mid-ocean ridges: insights from new seismic observations and synthesis with prior geophysical and geologic findings(American Geophysical Union, 2021-03-24) Carbotte, Suzanne M. ; Marjanovic, Milena ; Arnulf, Adrien F. ; Nedimovic, Mladen R. ; Canales, J. Pablo ; Arnoux, Gillean M.Recent multi-channel seismic studies of fast spreading and hot-spot influenced mid-ocean ridges reveal magma bodies located beneath the mid-crustal Axial Magma Lens (AML), embedded within the underlying crustal mush zone. We here present new seismic images from the Juan de Fuca Ridge that show reflections interpreted to be from vertically stacked magma lenses in a number of locations beneath this intermediate-spreading ridge. The brightest reflections are beneath Northern Symmetric segment, from ∼46°42′-52′N and Split Seamount, where a small magma body at local Moho depths is also detected, inferred to be a source reservoir for the stacked magma lenses in the crust above. The imaged magma bodies are sub-horizontal, extend continuously for along-axis lengths of ∼1–8 km, with the shallowest located at depths of ∼100–1,200 m below the AML, and are similar to sub-AML bodies found at the East Pacific Rise. At both ridges, stacked sill-like lenses are detected beneath only a small fraction of the ridge length examined and are inferred to mark local sites of higher melt flux and active replenishment from depth. The imaged magma lenses are focused in the upper part of the lower crust, which coincides with the most melt rich part of the crystal mush zone detected in other geophysical studies and where sub-vertical fabrics are observed in geologic exposures of oceanic crust. We infer that the multi-level magma accumulations are ephemeral and may result from porous flow and mush compaction, and that they can be tapped and drained during dike intrusion and eruption events.
-
PreprintAnatomy of an active submarine volcano( 2014-05) Arnulf, Adrien F. ; Harding, Alistair J. ; Kent, Graham M. ; Carbotte, Suzanne M. ; Canales, J. Pablo ; Nedimovic, Mladen R.Most of the magma erupted at mid-ocean ridges is stored in a mid-crustal melt lens that lies at the boundary between sheeted dikes and gabbros. Nevertheless, images of the magma pathways linking this melt lens to the overlying eruption site have remained elusive. Here, we have used seismic methods to image the thickest magma reservoir observed beneath any spreading center to date, which is principally attributed to the juxtaposition of the Juan de Fuca Ridge with the Cobb hotspot. Our results reveal a complex melt body beneath the summit caldera, which is ~14 km long, 3 km wide and up to 1 km thick. The estimated volume of the reservoir is 18–30 km3, more than two orders of magnitude greater than the erupted magma volumes of the 1998 and 2011 eruptions. Our images show a network of sub-horizontal to shallow dipping (<30°) features that we interpret as pathways facilitating melt transport from the magma reservoir to the eruption sites.
-
ArticleVp/Vs ratio of incoming sediments off Cascadia subduction zone from analysis of controlled-source multicomponent OBS records(American Geophysical Union, 2020-05-28) Zhu, Jian ; Canales, J. Pablo ; Han, Shuoshuo ; Carbotte, Suzanne M. ; Arnulf, Adrien F. ; Nedimovic, Mladen R.P‐to‐S‐converted waves observed in controlled‐source multicomponent ocean bottom seismometer (OBS) records were used to derive the Vp/Vs structure of Cascadia Basin sediments. We used P‐to‐S waves converted at the basement to derive an empirical function describing the average Vp/Vs of Cascadia sediments as a function of sediment thickness. We derived one‐dimensional interval Vp/Vs functions from semblance velocity analysis of S‐converted intrasediment and basement reflections, which we used to define an empirical Vp/Vs versus burial depth compaction trend. We find that seaward from the Cascadia deformation front, Vp/Vs structure offshore northern Oregon and Washington shows little variability along strike, while the structure of incoming sediments offshore central Oregon is more heterogeneous and includes intermediate‐to‐deep sediment layers of anomalously elevated Vp/Vs. These zones with elevated Vp/Vs are likely due to elevated pore fluid pressures, although layers of high sand content intercalated within a more clayey sedimentary sequence, and/or a higher content of coarser‐grained clay minerals relative to finer‐grained smectite could be contributing factors. We find that the proto‐décollement offshore central Oregon develops within the incoming sediments at a low‐permeability boundary that traps fluids in a stratigraphic level where fluid overpressure exceeds 50% of the differential pressure between the hydrostatic pressure and the lithostatic pressure. Incoming sediments with the highest estimated fluid overpressures occur offshore central Oregon where deformation of the accretionary prism is seaward vergent. Conversely, landward vergence offshore northern Oregon and Washington correlates with more moderate pore pressures and laterally homogeneous Vp/Vs functions of Cascadia Basin sediments.