Gross
Thomas F.
Gross
Thomas F.
No Thumbnail Available
Search Results
Now showing
1 - 4 of 4
-
Technical ReportData report : stress measurements in the bottom boundary layer with BASS tripods STRESS II 1990-91(Woods Hole Oceanographic Institution, 1993-11) Gross, Thomas F. ; Amft, Julie ; Williams, Albert J.Two Benthic Acoustic Strss Sensor (BASS) equipped tripods were deployed in the Sediment TRansport Events on Shelves and Slopes (STRESS) experiment on the Californa Shelf acquiring data from January to March 1991. They measured velocity profiles in the bottom boundary layer over the lowest 5 meters. Trasmissometers, thermistors, and a pressure sensor on each tripod provided suspended sediment concentration, stratification, and wave spectral information, as well.
-
Technical ReportFluid mechanical measurements within the boundary layer over the northern California Continental Shelf during STRESS(Woods Hole Oceanographic Institution, 1993-09) Fredericks, Janet J. ; Trowbridge, John H. ; Williams, Albert J. ; Lentz, Steven J. ; Butman, Bradford ; Gross, Thomas F.In studying the processes controlling particle distrbution of fine sediments over the continental shelf, the height, structure and dynamics of the bottom boundary layer must be better understood. The Sediment Transport Events on Shelves and Slopes (STRESS) program provides a comprehensive set of data over the bottom half of the water column at the 90m and the 130m isobaths along the northern California continental shelf during the winters of 1988-89 and 1990-91. This report presents the STRESS salinity, temperature, velocity, wave characteristics and attenuation data. The report describes the processing, provides plots and tables of the data and corresponding statistics for evaluation of the data, and documents the data fies. The combined set of moored and tripod mounted instrument measurements provides integrated, hourly-averaged profiles of the lower half of the water column at the four sites which can be used for analysis and modeling purposes.
-
ArticleAn International Quiet Ocean Experiment(Oceanography Society, 2011-06) Boyd, Ian L. ; Frisk, George V. ; Urban, Edward ; Tyack, Peter L. ; Ausubel, Jesse ; Seeyave, Sphie ; Cato, Doug ; Southall, Brandon L. ; Weise, Michael ; Andrew, Rex K. ; Akamatsu, Tomonari ; Dekeling, Rene ; Erbe, Christine ; Farmer, David M. ; Gentry, Roger ; Gross, Thomas F. ; Hawkins, Anthony D. ; Li, Fenghua ; Metcalf, Kathy ; Miller, James H. ; Moretti, David J. ; Rodrigo, Cristian ; Shinke, TomioThe effect of noise on marine life is one of the big unknowns of current marine science. Considerable evidence exists that the human contribution to ocean noise has increased during the past few decades: human noise has become the dominant component of marine noise in some regions, and noise is directly correlated with the increasing industrialization of the ocean. Sound is an important factor in the lives of many marine organisms, and theory and increasing observations suggest that human noise could be approaching levels at which negative effects on marine life may be occurring. Certain species already show symptoms of the effects of sound. Although some of these effects are acute and rare, chronic sublethal effects may be more prevalent, but are difficult to measure. We need to identify the thresholds of such effects for different species and be in a position to predict how increasing anthropogenic sound will add to the effects. To achieve such predictive capabilities, the Scientific Committee on Oceanic Research (SCOR) and the Partnership for Observation of the Global Oceans (POGO) are developing an International Quiet Ocean Experiment (IQOE), with the objective of coordinating the international research community to both quantify the ocean soundscape and examine the functional relationship between sound and the viability of key marine organisms. SCOR and POGO will convene an open science meeting to gather community input on the important research, observations, and modeling activities that should be included in IQOE.
-
Technical ReportBottom boundary layer stress measurements with BASS tripods : data report STRESS 1988-89(Woods Hole Oceanographic Institution, 1993-11) Gross, Thomas F. ; Williams, Albert J.Two Benthic Acoustic Stress Sensor (BASS) equipped tripods were deployed in the Sediment Transport Events on Shelves and Slopes (STRESS) experiment in November, 1988, and recovered in March, 1989, on the California Shelf. They measured velocity profiles in the bottom boundary layer over the lowest 5 meters. Transmissometers, thermistors, and a pressure sensor on each tripod provided suspended sediment concentration, stratification, and wave spectral information, as well.