Fearnbach
Holly
Fearnbach
Holly
No Thumbnail Available
Search Results
Now showing
1 - 4 of 4
-
ArticlePopulation comparison of right whale body condition reveals poor state of the North Atlantic right whale(Inter Research, 2020-04-23) Christiansen, Fredrik ; Dawson, Stephen M. ; Durban, John W. ; Fearnbach, Holly ; Miller, Carolyn A. ; Bejder, Lars ; Uhart, Marcela ; Sironi, Mariano ; Corkeron, Peter ; Rayment, William ; Leunissen, Eva ; Haria, Eashani ; Ward, Rhianne ; Warick, Hunter A. ; Kerr, Iain ; Lynn, Morgan S. ; Pettis, Heather M. ; Moore, Michael J.The North Atlantic right whale Eubalaena glacialis (NARW), currently numbering <410 individuals, is on a trajectory to extinction. Although direct mortality from ship strikes and fishing gear entanglements remain the major threats to the population, reproductive failure, resulting from poor body condition and sublethal chronic entanglement stress, is believed to play a crucial role in the population decline. Using photogrammetry from unmanned aerial vehicles, we conducted the largest population assessment of right whale body condition to date, to determine if the condition of NARWs was poorer than 3 seemingly healthy (i.e. growing) populations of southern right whales E. australis (SRWs) in Argentina, Australia and New Zealand. We found that NARW juveniles, adults and lactating females all had lower body condition scores compared to the SRW populations. While some of the difference could be the result of genetic isolation and adaptations to local environmental conditions, the magnitude suggests that NARWs are in poor condition, which could be suppressing their growth, survival, age of sexual maturation and calving rates. NARW calves were found to be in good condition. Their body length, however, was strongly determined by the body condition of their mothers, suggesting that the poor condition of lactating NARW females may cause a reduction in calf growth rates. This could potentially lead to a reduction in calf survival or an increase in female calving intervals. Hence, the poor body condition of individuals within the NARW population is of major concern for its future viability.
-
ArticleLarger females have more calves: influence of maternal body length on fecundity in North Atlantic right whales(Inter Research, 2022-05-12) Stewart, Joshua D. ; Durban, John W. ; Europe, Hollis ; Fearnbach, Holly ; Hamilton, Philip K. ; Knowlton, Amy R. ; Lynn, Morgan S. ; Miller, Carolyn A. ; Perryman, Wayne L. ; Tao, Brandon W. H. ; Moore, Michael J.North Atlantic right whales (NARW) are critically endangered and have been declining in abundance since 2011. In the past decade, human-caused mortalities from vessel strikes and entanglements have been increasing, while birth rates in the population are at a 40 yr low. In addition to declining abundance, recent studies have shown that NARW length-at-age is decreasing due to the energetic impacts of sub-lethal entanglements, and that the body condition of the population is poorer than closely related southern right whales. We examined whether shorter body lengths are associated with reduced fecundity in female NARW. We compared age-corrected, modeled metrics of body length with 3 metrics of fecundity: age at first reproduction, average inter-birth interval, and the number of calves produced per potential reproductive year. We found that body length is significantly related to birth interval and calves produced per reproductive year, but not age at first reproduction. Larger whales had shorter inter-birth intervals and produced more calves per potential reproductive year. Larger whales also had higher lifetime calf production, but this was a result of larger whales having longer potential reproductive spans, as body lengths have generally been declining over the past 40 yr. Declining body sizes are a potential contributor to low birth rates over the past decade. Efforts to reduce entanglements and vessel strikes could help maintain population viability by increasing fecundity and improving resiliency of the population to other anthropogenic and climate impacts.
-
ArticleExtensive core microbiome in drone-captured whale blow supports a framework for health monitoring(American Society for Microbiology, 2017-10-10) Apprill, Amy ; Miller, Carolyn A. ; Moore, Michael J. ; Durban, John W. ; Fearnbach, Holly ; Barrett-Lennard, Lance G.The pulmonary system is a common site for bacterial infections in cetaceans, but very little is known about their respiratory microbiome. We used a small, unmanned hexacopter to collect exhaled breath condensate (blow) from two geographically distinct populations of apparently healthy humpback whales (Megaptera novaeangliae), sampled in the Massachusetts coastal waters off Cape Cod (n = 17) and coastal waters around Vancouver Island (n = 9). Bacterial and archaeal small-subunit rRNA genes were amplified and sequenced from blow samples, including many of sparse volume, as well as seawater and other controls, to characterize the associated microbial community. The blow microbiomes were distinct from the seawater microbiomes and included 25 phylogenetically diverse bacteria common to all sampled whales. This core assemblage comprised on average 36% of the microbiome, making it one of the more consistent animal microbiomes studied to date. The closest phylogenetic relatives of 20 of these core microbes were previously detected in marine mammals, suggesting that this core microbiome assemblage is specialized for marine mammals and may indicate a healthy, noninfected pulmonary system. Pathogen screening was conducted on the microbiomes at the genus level, which showed that all blow and few seawater microbiomes contained relatives of bacterial pathogens; no known cetacean respiratory pathogens were detected in the blow. Overall, the discovery of a shared large core microbiome in humpback whales is an important advancement for health and disease monitoring of this species and of other large whales.
-
ArticleDecreasing body size is associated with reduced calving probability in critically endangered North Atlantic right whales(Royal Society of Chemistry, 2024-02-28) Pirotta, Enrico ; Tyack, Peter L. ; Durban, John W. ; Fearnbach, Holly ; Hamilton, Philip K. ; Harris, Catriona M. ; Knowlton, Amy R. ; Kraus, Scott D. ; Miller, Carolyn A. ; Moore, Michael J. ; Pettis, Heather M. ; Photopoulou, Theoni ; Rolland, Rosalind M. ; Schick, Robert S. ; Thomas, LenBody size is key to many life-history processes, including reproduction. Across species, climate change and other stressors have caused reductions in the body size to which animals can grow, called asymptotic size, with consequences for demography. A reduction in mean asymptotic length was documented for critically endangered North Atlantic right whales, in parallel with declines in health and vital rates resulting from human activities and environmental changes. Here, we tested whether smaller body size was associated with lower reproductive output, using a state-space model for individual health, survival and reproduction that quantifies the mechanistic links between these processes. Body size (as represented by the cube of length) was strongly associated with a female's calving probability at each reproductive opportunity. This relationship explained 62% of the variation in calving among reproductive females, along with their decreasing health (20%). The effects of decreasing mean body size on reproductive performance are another concerning indication of the worsening prospects for this species and many others affected by environmental change, requiring a focus of conservation and management interventions on improving conditions that affect reproduction as well as reducing mortality.