Stanway Michael J.

No Thumbnail Available
Last Name
Stanway
First Name
Michael J.
ORCID

Search Results

Now showing 1 - 3 of 3
  • Article
    Autonomous four-dimensional mapping and tracking of a coastal upwelling front by an autonomous underwater vehicle
    (John Wiley & Sons, 2015-07-14) Zhang, Yanwu ; Bellingham, James G. ; Ryan, John P. ; Kieft, Brian ; Stanway, Michael J.
    Coastal upwelling is a wind-driven ocean process that brings cooler, saltier, and nutrient-rich deep water upward to the surface. The boundary between the upwelling water and the normally stratified water is called the “upwelling front.” Upwelling fronts support enriched phytoplankton and zooplankton populations, thus they have great influences on ocean ecosystems. Traditional ship-based methods for detecting and sampling ocean fronts are often laborious and very difficult, and long-term tracking of such dynamic features is practically impossible. In our prior work, we developed a method of using an autonomous underwater vehicle (AUV) to autonomously detect an upwelling front and track the front's movement on a fixed latitude, and we applied the method in scientific experiments. In this paper, we present an extension of the method. Each time the AUV crosses and detects the front, the vehicle makes a turn at an oblique angle to recross the front, thus zigzagging through the front to map the frontal zone. The AUV's zigzag tracks alternate in northward and southward sweeps, so as to track the front as it moves over time. This way, the AUV maps and tracks the front in four dimensions—vertical, cross-front, along-front, and time. From May 29 to June 4, 2013, the Tethys long-range AUV ran the algorithm to map and track an upwelling front in Monterey Bay, CA, over five and one-half days. The tracking revealed spatial and temporal variabilities of the upwelling front.
  • Article
    Rotation identification in geometric algebra : theory and application to the navigation of underwater robots in the field
    (John Wiley & Sons, 2015-05-02) Stanway, Michael J. ; Kinsey, James C.
    We report the derivation and experimental evaluation of a stable adaptive identifier to estimate rigid body rotations using rotors in Geometric Algebra (GA). This work is motivated by the need for in situ estimation of the alignment between sensors commonly used in underwater vehicle navigation. Here we derive an adaptive identifier using a geometric interpretation of the error to drive first-order rotor kinematics. We prove that it is Lyapunov stable, and we show that it is asymptotically stable in the presence of persistent excitation. We use the identifier to estimate the alignment between the Doppler velocity log sonar and the fiber optic gyrocompass used by underwater vehicles for dead reckoning (DR). We evaluate this method in the laboratory with a remotely operated vehicle (ROV), and then with an autonomous underwater vehicle (AUV) operating in the field at 1,200 m depth. Our results show that this technique reduces dead reckoning navigation errors on these platforms and provides comparable performance to previously reported SO(3) constrained Linear Algebra (LA) approaches. The rotor identifier has a number of advantages over these previously reported methods, including a more straightforward derivation, simpler gain tuning, increased computational efficiency, and reduced data manipulation.
  • Thesis
    Contributions to automated realtime underwater navigation
    (Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 2012-02) Stanway, Michael J.
    This dissertation presents three separate–but related–contributions to the art of underwater navigation. These methods may be used in postprocessing with a human in the loop, but the overarching goal is to enhance vehicle autonomy, so the emphasis is on automated approaches that can be used in realtime. The three research threads are: i) in situ navigation sensor alignment, ii) dead reckoning through the water column, and iii) model-driven delayed measurement fusion. Contributions to each of these areas have been demonstrated in simulation, with laboratory data, or in the field–some have been demonstrated in all three arenas. The solution to the in situ navigation sensor alignment problem is an asymptotically stable adaptive identifier formulated using rotors in Geometric Algebra. This identifier is applied to precisely estimate the unknown alignment between a gyrocompass and Doppler velocity log, with the goal of improving realtime dead reckoning navigation. Laboratory and field results show the identifier performs comparably to previously reported methods using rotation matrices, providing an alignment estimate that reduces the position residuals between dead reckoning and an external acoustic positioning system. The Geometric Algebra formulation also encourages a straightforward interpretation of the identifier as a proportional feedback regulator on the observable output error. Future applications of the identifier may include alignment between inertial, visual, and acoustic sensors. The ability to link the Global Positioning System at the surface to precision dead reckoning near the seafloor might enable new kinds of missions for autonomous underwater vehicles. This research introduces a method for dead reckoning through the water column using water current profile data collected by an onboard acoustic Doppler current profiler. Overlapping relative current profiles provide information to simultaneously estimate the vehicle velocity and local ocean current–the vehicle velocity is then integrated to estimate position. The method is applied to field data using online bin average, weighted least squares, and recursive least squares implementations. This demonstrates an autonomous navigation link between the surface and the seafloor without any dependence on a ship or external acoustic tracking systems. Finally, in many state estimation applications, delayed measurements present an interesting challenge. Underwater navigation is a particularly compelling case because of the relatively long delays inherent in all available position measurements. This research develops a flexible, model-driven approach to delayed measurement fusion in realtime Kalman filters. Using a priori estimates of delayed measurements as augmented states minimizes the computational cost of the delay treatment. Managing the augmented states with time-varying conditional process and measurement models ensures the approach works within the proven Kalman filter framework–without altering the filter structure or requiring any ad-hoc adjustments. The end result is a mathematically principled treatment of the delay that leads to more consistent estimates with lower error and uncertainty. Field results from dead reckoning aided by acoustic positioning systems demonstrate the applicability of this approach to real-world problems in underwater navigation.