Dick Henry J. B.

No Thumbnail Available
Last Name
Dick
First Name
Henry J. B.
ORCID
0000-0003-0225-1439

Search Results

Now showing 1 - 20 of 36
  • Preprint
    Sulfide enrichment at an oceanic crust-mantle transition zone : Kane Megamullion (23°N, MAR)
    ( 2018-03) Ciazela, Jakub ; Koepke, Juergen ; Dick, Henry J. B. ; Botcharnikov, Roman ; Muszynski, Andrzej ; Lazarov, Marina ; Schuth, Stephan ; Pieterek, Bartosz ; Kuhn, Thomas
    The Kane Megamullion oceanic core complex located along the Mid-Atlantic Ridge (23°30′N, 45°20′W) exposes lower crust and upper mantle directly on the ocean floor. We studied chalcophile elements and sulfides in the ultramafic and mafic rocks of the crust-mantle transition and the mantle underneath. We determined mineralogical and elemental composition and the Cu isotope composition of the respective sulfides along with the mineralogical and elemental composition of the respective serpentines. The rocks of the crust-mantle transition zone (i.e., plagioclase harzburgite, peridotite-gabbro contacts, and dunite) overlaid by troctolites are by one order of magnitude enriched in several chalcophile elements with respect to the spinel harzburgites of the mantle beneath. Whereas the range of Cu concentrations in spinel harzburgites is 7–69 ppm, the Cu concentrations are highly elevated in plagioclase harzburgites with a range of 90–209 ppm. The zones of the peridotite-gabbro contacts are even more enriched, exhibiting up to 305 ppm Cu and highly elevated concentrations of As, Zn, Ga, Sb and Tl. High Cu concentrations show pronounced correlation with bulk S concentrations at the crust-mantle transition zone implying an enrichment process in this horizon of the oceanic lithosphere. We interpret this enrichment as related to melt-mantle reaction, which is extensive in crust-mantle transition zones. In spite of the ubiquitous serpentinization of primary rocks, we found magmatic chalcopyrites [CuFeS2] as inclusions in plagioclase as well as associated with pentlandite [(Fe,Ni)9S8] and pyrrhotite [Fe1−xS] in polysulfide grains. These chalcopyrites show a primary magmatic δ65Cu signature ranging from −0.04 to +0.29 ‰. Other chalcopyrites have been dissolved during serpentinization. Due to the low temperature (<300 °C) of circulating fluids chalcophile metals from primary sulfides have not been mobilized and transported away but have been trapped in smaller secondary sulfides and hydroxides. Combined with the Cu deposits documented in the crust-mantle transition zones of various ophiolite complexes, our results indicate that the metal enrichment, increased sulfide modes, and potentially formation of small sulfide deposits could be expected globally along the petrological Moho.
  • Article
    Sulfide enrichment along igneous layer boundaries in the lower oceanic crust: IODP Hole U1473A, Atlantis Bank, Southwest Indian Ridge
    (Elsevier, 2022-02-01) Pieterek, Bartosz ; Ciazela, Jakub ; Boulanger, Marine ; Lazarov, Marina ; Wegorzewski, Anna V. ; Pańczyk, Magdalena ; Strauss, Harald ; Dick, Henry J. B. ; Muszynski, Andrzej ; Koepke, Juergen ; Kuhn, Thomas ; Czupy, Zbigniew ; France, Lydéric
    Reactive porous or focused melt flows are common in crystal mushes of mid-ocean ridge magma reservoirs. Although they exert significant control on mid-ocean ridge magmatic differentiation, their role in metal transport between the mantle and the ocean floor remains poorly constrained. Here we aim to improve such knowledge for oceanic crust formed at slow-spreading centers (approximately half of present-day oceanic crust), by focusing on specific igneous features where sulfides are concentrated. International Ocean Discovery Program (IODP) Expedition 360 drilled Hole U1473A 789 m into the lower crust of the Atlantis Bank oceanic core complex, located at the Southwest Indian Ridge. Coarse-grained (5–30 mm) olivine gabbro prevailed throughout the hole, ranging locally from fine- (<1 mm), to very coarse-grained (>30 mm). We studied three distinct intervals of igneous grain size layering at 109.5–110.8, 158.0–158.3, and 593.0–594.4 meters below seafloor to understand the distribution of sulfides. We found that the layer boundaries between the fine- and coarse-grained gabbro were enriched in sulfides and chalcophile elements. On average, sulfide grains throughout the layering were composed of pyrrhotite (81 vol.%; Fe1-xS), chalcopyrite (16 vol.%; CuFeS2), and pentlandite (3 vol.%; [Ni,Fe,Co]9S8), which reflect paragenesis of magmatic origin. The sulfides were most commonly associated with Fe-Ti oxides (titanomagnetites and ilmenites), amphiboles, and apatites located at the interstitial positions between clinopyroxene, plagioclase, and olivine. Pentlandite exsolution textures in pyrrhotite indicate that the sulfides formed from high-temperature sulfide liquid separated from mafic magma that exsolved upon cooling. The relatively homogenous phase proportion within sulfides along with their chemical and isotopic compositions throughout the studied intervals further support the magmatic origin of sulfide enrichment at the layer boundaries. The studied magmatic layers were likely formed as a result of intrusion of more primitive magma (fine-grained gabbro) into the former crystal mush (coarse-grained gabbro). Sulfides from the coarse-grained gabbros are Ir-Platinum Group Element-rich (PGE; i.e., Ir, Os, Ru) but those from the fine-grained gabbros are Pd-PGE-rich (i.e., Pd, Pt, Rh). Notably, the sulfides from the layer boundaries are also enriched in Pd-PGEs, and therefore elevated sulfide contents at the boundaries were likely related to the new intruding melt. Because S concentration at sulfide saturation level is dependent on the Fe content of the melt, sulfide crystallization may have been caused by FeO loss, both via crystallization of late-precipitating oxides at the boundaries, and by exchange of Fe and Mg between melt and Fe-bearing silicates (olivine and clinopyroxene). The increased precipitation of sulfide grains at the layer boundaries might be widespread in the lower oceanic crust, as also observed in the Semail ophiolite and along the Mid-Atlantic Ridge. Therefore, this process might affect the metal budget of the global lower oceanic crust. We estimate that up to ∼20% of the Cu, ∼8% of the S, and ∼84% of the Pb of the oceanic crust inventory is accumulated at the layer boundaries only from the interaction between crystal mush and new magma.
  • Article
    Hydrothermal venting in magma deserts : the ultraslow-spreading Gakkel and Southwest Indian Ridges
    (American Geophysical Union, 2004-08-18) Baker, Edward T. ; Edmonds, Henrietta N. ; Michael, Peter J. ; Bach, Wolfgang ; Dick, Henry J. B. ; Snow, Jonathan E. ; Walker, Sharon L. ; Banerjee, Neil R. ; Langmuir, Charles H.
    Detailed hydrothermal surveys over ridges with spreading rates of 50–150 mm/yr have found a linear relation between spreading rate and the spatial frequency of hydrothermal venting, but the validity of this relation at slow and ultraslow ridges is unproved. Here we compare hydrothermal plume surveys along three sections of the Gakkel Ridge (Arctic Ocean) and the Southwest Indian Ridge (SWIR) to determine if hydrothermal activity is similarly distributed among these ultraslow ridge sections and if these distributions follow the hypothesized linear trend derived from surveys along fast ridges. Along the Gakkel Ridge, most apparent vent sites occur on volcanic highs, and the extraordinarily weak vertical density gradient of the deep Arctic permits plumes to rise above the axial bathymetry. Individual plumes can thus be extensively dispersed along axis, to distances >200 km, and ∼75% of the total axial length surveyed is overlain by plumes. Detailed mapping of these plumes points to only 9–10 active sites in 850 km, however, yielding a site frequency F s , sites/100 km of ridge length, of 1.1–1.2. Plumes detected along the SWIR are considerably less extensive for two reasons: an apparent paucity of active vent fields on volcanic highs and a normal deep-ocean density gradient that prevents extended plume rise. Along a western SWIR section (10°–23°E) we identify 3–8 sites, so F s = 0.3–0.8; along a previously surveyed 440 km section of the eastern SWIR (58°–66°E), 6 sites yield F s = 1.3. Plotting spreading rate (us) versus F s, the ultraslow ridges and eight other ridge sections, spanning the global range of spreading rate, establish a robust linear trend (F s = 0.98 + 0.015us), implying that the long-term heat supply is the first-order control on the global distribution of hydrothermal activity. Normalizing F s to the delivery rate of basaltic magma suggests that ultraslow ridges are several times more efficient than faster-spreading ridges in supporting active vent fields. This increased efficiency could derive from some combination of three-dimensional magma focusing at volcanic centers, deep mining of heat from gabbroic intrusions and direct cooling of the upper mantle, and nonmagmatic heat supplied by exothermic serpentinization.
  • Article
    Tectonic controls on block rotation and sheeted sill emplacement in the Xigaze Ophiolite (Tibet): the construction mode of slow-spreading and ultraslow-spreading oceanic crusts
    (American Geophysical Union, 2021-01-28) Liu, Tong ; Dick, Henry J. B. ; Liu, Chuan-Zhou ; Wu, Fu-Yuan ; Ji, Wen-Bin ; Zhang, Chang ; Zhang, Wei-Qi ; Zhang, Zhen-Yu ; Lin, Yin-Zheng ; Zhang, Zhen
    The internal structure of oceanic crusts is not well understood due to the limitation of deep drilling. However, that of ophiolites, i.e., on-land ancient analogs of oceanic lithosphere, could be precisely mapped and measured. The Xigaze ophiolite in Tibet has been regarded as “peculiar”, due to the sheeted sill complex in its upper crust, and non-sheeted diabase sills/dikes crosscutting its mantle and lower crust, which are geometrically different from the primarily vertical sheeted dike complex. Based on extensive field observations, here we present petrological and geochemical data for the Xigaze ophiolite to decipher the origin of sheeted sill complex and its implications for the construction of oceanic crusts. Diabases in the Xigaze ophiolite could be subdivided into sheeted sills, Group 1 non-sheeted dikes, and Group 2 non-sheeted sills, based on their orientations. These diabases cut other lithologies, and hence belong to the latest-stage products. Based on petrological, geochemical, and structural data, we highlight the important role of detachment fault in the generation of sheeted and non-sheeted sills. During the formation of oceanic crust, large block exhumation, multi-stage rotations, and foundering are argued here as key mechanisms for the generation of Xigaze sheeted and non-sheeted dikes/sills, all of which are in the evolution of detachment fault systems. These processes are also not uncommon for asymmetrical segments at modern slow-spreading and ultraslow-spreading ridges, but are rare at symmetrical segments. Due to the evolution of detachment fault, the internal structures of (ultra)slow-spreading ridges are more complex than those at fast-spreading ridges.
  • Preprint
    Thin crust as evidence for an inherited mantle depletion supporting the Marion Rise
    ( 2012-12) Zhou, Huaiyang ; Dick, Henry J. B.
    The global ridge system is dominated by oceanic rises reflecting large variations in axial depth associated with mantle hotspots. The little studied Marion Rise is as large as the Icelandic, considering length and depth, but has an axial rift rather than a high nearly its entire length. Uniquely, along the SW Indian Ridge systematic sampling allows direct examination of crustal architecture over its full length. Unlike Iceland, peridotites are extensively exposed high over the rise. This shows for the 1st time that the crust is generally thin, and often missing over a rifted rise. Thus the rise must be largely an isostatic response to ancient melting events that created low-density depleted mantle beneath the ridge rather than thickened crust and/or a large thermal anomaly. The likely origin for the depleted mantle is that emplaced into the African asthenosphere during the Karoo and Madagascar flood basalt events.
  • Article
    Dynamic accretion beneath a slow-spreading ridge segment: IODP hole 1473A and the Atlantis Bank oceanic core complex
    (American Geophysical Union, 2019-11-07) Dick, Henry J. B. ; MacLeod, Christopher J. ; Blum, Peter ; Abe, Natsue ; Blackman, Donna K. ; Bowles, Julie A. ; Cheadle, Michael J. ; Cho, K. ; Ciazela, Jakub ; Deans, Jeremy ; Edgcomb, Virginia P. ; Ferrando, Carlotta ; France, Lydéric ; Ghosh, Biswajit ; Ildefonse, Benoit ; John, Barbara E. ; Kendrick, Mark A. ; Koepke, Juergen ; Leong, James ; Liu, Chuanzhou ; Ma, Qiang ; Morishita, Tomoaki ; Morris, Antony ; Natland, James H. ; Nozaka, Toshio ; Pluemper, Oliver ; Sanfilippo, Alessio ; Sylvan, Jason B. ; Tivey, Maurice A. ; Tribuzio, Riccardo ; Viegas, G.
    809 deep IODP Hole U1473A at Atlantis Bank, SWIR, is 2.2 km from 1,508‐m Hole 735B and 1.4 from 158‐m Hole 1105A. With mapping, it provides the first 3‐D view of the upper levels of a 660‐km2 lower crustal batholith. It is laterally and vertically zoned, representing a complex interplay of cyclic intrusion, and ongoing deformation, with kilometer‐scale upward and lateral migration of interstial melt. Transform wall dives over the gabbro‐peridotite contact found only evolved gabbro intruded directly into the mantle near the transform. There was no high‐level melt lens, rather the gabbros crystallized at depth, and then emplaced into the zone of diking by diapiric rise of a crystal mush followed by crystal‐plastic deformation and faulting. The residues to mass balance the crust to a parent melt composition lie at depth below the center of the massif—likely near the crust‐mantle boundary. Thus, basalts erupted to the seafloor from >1,550 mbsf. By contrast, the Mid‐Atlantic Ridge lower crust drilled at 23°N and at Atlantis Massif experienced little high‐temperature deformation and limited late‐stage melt transport. They contain primitive cumulates and represent direct intrusion, storage, and crystallization of parental MORB in thinner crust below the dike‐gabbro transition. The strong asymmetric spreading of the SWIR to the south was due to fault capture, with the northern rift valley wall faults cutoff by a detachment fault that extended across most of the zone of intrusion. This caused rapid migration of the plate boundary to the north, while the large majority of the lower crust to spread south unroofing Atlantis Bank and uplifting it into the rift mountains.
  • Article
    Nonvolcanic seafloor spreading and corner-flow rotation accommodated by extensional faulting at 15°N on the Mid-Atlantic Ridge : a structural synthesis of ODP Leg 209
    (American Geophysical Union, 2007-06-28) Schroeder, Timothy ; Cheadle, Michael J. ; Dick, Henry J. B. ; Faul, Ulrich ; Casey, John F. ; Kelemen, Peter B.
    Drilling during ODP Leg 209, dredging, and submersible dives have delineated an anomalous stretch of the Mid-Atlantic Ridge north and south of the 15°20′N Fracture Zone. The seafloor here consists dominantly of mantle peridotite with gabbroic intrusions that in places is covered by a thin, discontinuous extrusive volcanic layer. Thick lithosphere (10–20 km) in this region inhibits magma from reaching shallow levels beneath the ridge axis, thereby causing plate accretion to be accommodated by extensional faulting rather than magmatism. The bathymetry and complex fault relations in the drill-core suggest that mantle denudation and spreading are accommodated by a combination of high-displacement, rolling-hinge normal faults and secondary lower-displacement normal faults. These extensional faults must also accommodate corner flow rotation (up to 90°) of the upwelling mantle within the shallow lithosphere, consistent with remnant magnetic inclinations in denuded peridotite and gabbro from Leg 209 core that indicate up to 90° of sub-Curie-temperature rotation.
  • Article
    Development and evolution of detachment faulting along 50 km of the Mid-Atlantic Ridge near 16.5°N
    (John Wiley & Sons, 2014-12-05) Smith, Deborah K. ; Schouten, Hans A. ; Dick, Henry J. B. ; Cann, Johnson R. ; Salters, Vincent J. M. ; Marschall, Horst R. ; Ji, Fuwu ; Yoerger, Dana R. ; Sanfilippo, Alessio ; Parnell-Turner, Ross ; Palmiotto, Camilla ; Zheleznov, Alexei ; Bai, Hailong ; Junkin, Will ; Urann, Ben ; Dick, Spencer ; Sulanowska, Margaret ; Lemmond, Peter ; Curry, Scott
    A multifaceted study of the slow spreading Mid-Atlantic Ridge (MAR) at 16.5°N provides new insights into detachment faulting and its evolution through time. The survey included regional multibeam bathymetry mapping, high-resolution mapping using AUV Sentry, seafloor imaging using the TowCam system, and an extensive rock-dredging program. At different times, detachment faulting was active along ∼50 km of the western flank of the study area, and may have dominated spreading on that flank for the last 5 Ma. Detachment morphologies vary and include a classic corrugated massif, noncorrugated massifs, and back-tilted ridges marking detachment breakaways. High-resolution Sentry data reveal a new detachment morphology; a low-angle, irregular surface in the regional bathymetry is shown to be a finely corrugated detachment surface (corrugation wavelength of only tens of meters and relief of just a few meters). Multiscale corrugations are observed 2–3 km from the detachment breakaway suggesting that they formed in the brittle layer, perhaps by anastomosing faults. The thin wedge of hanging wall lavas that covers a low-angle (6°) detachment footwall near its termination are intensely faulted and fissured; this deformation may be enhanced by the low angle of the emerging footwall. Active detachment faulting currently is limited to the western side of the rift valley. Nonetheless, detachment fault morphologies also are present over a large portion of the eastern flank on crust >2 Ma, indicating that within the last 5 Ma parts of the ridge axis have experienced periods of two-sided detachment faulting.
  • Preprint
    Magnesium isotopic composition of the oceanic mantle and oceanic Mg cycling
    ( 2017-02) Liu, Ping-Ping ; Teng, Fang-Zhen ; Dick, Henry J. B. ; Zhou, Mei-Fu ; Chung, Sun-Lin
    To constrain the Mg isotopic composition of the oceanic mantle, investigate Mg isotope fractionation of abyssal peridotites during seafloor alteration, and assess Mg budget in the oceans, a suite of 32 abyssal peridotite samples from the Gakkel Ridge and Southwest Indian Ridge (SWIR) was, for the first time, selected for high-precision Mg isotope analyses. Although most of these samples are extensively altered, largely by serpentinization and weathering, primary olivine, diopside and enstatite grains are preserved in some samples. Olivine grains from the least altered samples have δ26Mg varying from −0.30 to −0.12‰ (n = 7), whereas enstatite and diopside have δ26Mg varying from −0.27 to −0.16‰ (n = 7), and from −0.23 to −0.09‰ (n = 6), respectively. Whole-rock δ26Mg values range from −0.24 to 0.03‰ with an average of −0.12 ± 0.13‰ (2SD, n = 32). Strongly serpentinized peridotites have lower average δ26Mg values (δ26Mg = −0.19 ± 0.07‰, 2SD, n = 7) than weathering-dominated ones (δ26Mg = −0.10 ± 0.12‰, 2SD, n = 25). Calculated Mg isotopic compositions of fresh mantle peridotites vary from −0.29 to −0.13‰, beyond the previously reported range of the subcontinental lithospheric mantle (−0.25 ± 0.04‰) and the analytical uncertainty (±0.07‰, 2SD). Our study therefore indicates that the oceanic mantle may have similar but slightly heterogeneous Mg isotopic compositions to that of subcontinental lithospheric mantle. Secondary serpentinization does not fractionate Mg isotopes of abyssal peridotites, whereas low-T weathering and formation of clay can result in the enrichment of heavy Mg isotopes in abyssal peridotites. This study also demonstrates that fluid-rock interaction does not necessarily produce rocks with intermediate Mg isotopic compositions. Magnesium isotopes of the rocks thereafter are dependent on the secondary minerals formed. We also conclude that the release of light Mg isotopes into the ocean during alteration of abyssal peridotites can be an important influx of Mg for the seawater Mg budget. Abyssal peridotites with a heavy Mg isotopic signature can be recycled into the mantle in subduction zones and may thus result in heterogeneous Mg isotopic compositions of the oceanic mantle and heavy Mg isotopic compositions of arc magmas.
  • Preprint
    Pervasive melt percolation reactions in ultra-depleted refractory harzburgites at the Mid-Atlantic Ridge, 15° 20′N : ODP Hole 1274A
    ( 2006-09-14) Seyler, Monique ; Lorand, J. -P. ; Dick, Henry J. B. ; Drouin, M.
    ODP Leg 209 Site 1274 mantle peridotites are highly refractory in terms of lack of residual clinopyroxene, olivine Mg# (up to 0.92) and spinel Cr# (~0.5), suggesting high degree of partial melting (>20%). Detailed studies of their microstructures show that they have extensively reacted with a pervading intergranular melt prior to cooling in the lithosphere, leading to crystallization of olivine, clinopyroxene and spinel at the expense of orthopyroxene. The least reacted harzburgites are too rich in orthopyroxene to be simple residues of low-pressure (spinel field) partial melting. Cu-rich sulfides that precipitated with the clinopyroxenes indicate that the intergranular melt was generated by no more than 12% melting of a MORB mantle or by more extensive melting of a clinopyroxene-rich lithology. Rare olivine-rich lherzolitic domains, characterized by relics of coarse clinopyroxenes intergrown with magmatic sulfides, support the second interpretation. Further, coarse and intergranular clinopyroxenes are highly depleted in REE, Zr and Ti. A two-stage partial melting/melt-rock reaction history is proposed, in which initial mantle underwent depletion and refertilization after an earlier high pressure (garnet field) melting event before upwelling and remelting beneath the present-day ridge. The ultra-depleted compositions were acquired through melt re-equilibration with residual harzburgites.
  • Article
    Nonvolcanic tectonic islands in ancient and modern oceans
    (John Wiley & Sons, 2013-10-24) Palmiotto, Camilla ; Corda, Laura ; Ligi, Marco ; Cipriani, Anna ; Dick, Henry J. B. ; Douville, Eric ; Gasperini, Luca ; Montagna, Paolo ; Thil, Francois ; Borsetti, Anna Maria ; Balestra, Barbara ; Bonatti, Enrico
    Most oceanic islands are due to excess volcanism caused by thermal and/or compositional mantle melting anomalies. We call attention here to another class of oceanic islands, due not to volcanism but to vertical motions of blocks of oceanic lithosphere related to transform tectonics. Sunken tectonic islands capped by carbonate platforms have been previously identified along the Vema and Romanche transforms in the equatorial Atlantic. We reprocessed seismic reflection lines, did new facies analyses and 87Sr/86Sr dating of carbonate samples from the carbonate platforms. A 50 km long narrow paleoisland flanking the Vema transform, underwent subsidence, erosion, and truncation at sea level; it was then capped by a 500 m thick carbonate platform dated by 87Sr/86Sr at ∼11–10 Ma. Three former islands on the crest of the Romanche transverse ridge are now at ∼900 m bsl; they show horizontal truncated surfaces of oceanic crust capped by ∼300 m thick carbonate platforms, with 10–6 Ma Sr isotopic ages. These sunken islands formed due to vertical tectonics related to transtension/transpression along long-offset slow-slip transforms. Another tectonic sunken island is Atlantis Bank, an uplifted gabbroic block along the Atlantis II transform (SW Indian Ridge) ∼700 m bsl. A modern tectonic island is St. Peter and St. Paul Rocks, a rising slab of upper mantle located at the St. Paul transform (equatorial Atlantic). “Cold” tectonic islands contrast with “hot” volcanic islands related to mantle thermal and/or compositional anomalies along accretionary boundaries and within oceanic plates, or to supra-subduction mantle melting that gives rise to islands arcs.
  • Article
    Correction to “Noble gas signatures of abyssal gabbros and peridotites at an Indian Ocean core complex”
    (American Geophysical Union, 2004-02-26) Kumagai, Hidenori ; Dick, Henry J. B. ; Kaneoka, Ichiro
  • Article
    Noble gas signatures of abyssal gabbros and peridotites at an Indian Ocean core complex
    (American Geophysical Union, 2003-12-30) Kumagai, Hidenori ; Dick, Henry J. B. ; Kaneoka, Ichiro
    We report some of the first noble gas data for in situ lower oceanic crust and shallow mantle. From a suite of gabbros and peridotites recovered from the Atlantis Bank oceanic core complex on the Southwest Indian Ridge, we measured He, Ne, Ar, Kr and Xe concentrations as well as 3He/4He and 40Ar/36Ar ratios, there by documenting the noble gas content and signature of oceanic lithosphere. Except for a single ultramylonite, the gabbros have higher 3He/4He ratios than atmospheric. Three gabbros have MORB-like bulk 3He/4He ratios higher than 6RA despite variable helium concentrations, as much as two to three orders of magnitude lower than in MORB glasses. One of these is mylonitized, demonstrating that magmatic helium can be retained despite intense high-temperature crystal-plastic deformation in the lower crust. Of the gabbros measured, green amphibole-bearing samples show relatively high helium abundances. Peridotite noble gas concentrations measured in clinopyroxene separates are dominantly lower than gabbros. Specifically, He abundances are similar to or greater than gabbros with MORB-like 3He/4He isotopic ratios. All the gabbros and peridotite clinopyroxenes show severely contaminated 40Ar/36Ar values up to 1300. Magmatic 40Ar is enriched in the oxide-olivine gabbro with the highest 40Ar/36Ar in the entire sample suit. These results suggest as an actual data that the recycling of the lower oceanic crust and shallow mantle should be considered in modeling mantle evolution at least for helium. Measured helium abundances, though lower than in basalt glasses, are greater than those in crystalline MORB. Even if entire upper crust retains primary magmatic signature, oceanic lower crust and lithospheric mantle may impact larger by recycling due to their large volumes.
  • Technical Report
    Description of W.H.O.I. rock dredge samples : volume 3
    (Woods Hole Oceanographic Institution, 1981-05) Farmer, Harlow G. ; Dick, Henry J. B.
    This report is Volume III of DESCRIPTIONS OF WHOI ROCK DREDGE SAMPLES. This series represents a major effort to catalog the rock dredge samples in the WHOI Sea Floor Samples collection, and to disseminate this information throughout the scientific community. Volume III contains sample descriptions and station data for the dredge stations from five cruises during the period September 1978 through December 1980. The material in this and subsequent volumes of rock descriptions was largely prepared onboard ship by the participating scientists. Volumes I and II are now being prepared by the WHOI Curatorial staff, and describe material in the rock collection obtained prior to 1978. Volume III is being printed prior to volumes I and II because of the excellent documentation of the samples represented in this volume, and because more effort remains in documenting the samples obtained on some of the older cruises. We expect that volumes I and II will be printed and distributed with in the next year.
  • Article
    Mylonitic deformation at the Kane oceanic core complex : implications for the rheological behavior of oceanic detachment faults
    (John Wiley & Sons, 2013-08-28) Hansen, Lars N. ; Cheadle, Michael J. ; John, Barbara E. ; Swapp, Susan M. ; Dick, Henry J. B. ; Tucholke, Brian E. ; Tivey, Maurice A.
    The depth extent, strength, and composition of oceanic detachment faults remain poorly understood because the grade of deformation-related fabrics varies widely among sampled oceanic core complexes (OCCs). We address this issue by analyzing fault rocks collected from the Kane oceanic core complex at 23°30′N on the Mid-Atlantic Ridge. A portion of the sample suite was collected from a younger fault scarp that cuts the detachment surface and exposes the interior of the most prominent dome. The style of deformation was assessed as a function of proximity to the detachment surface, revealing a ∼450 m thick zone of high-temperature mylonitization overprinted by a ∼200 m thick zone of brittle deformation. Geothermometry of deformed gabbros demonstrates that crystal-plastic deformation occurred at temperatures >700°C. Analysis of the morphology of the complex in conjunction with recent thermochronology suggests that deformation initiated at depths of ∼7 km. Thus we suggest the detachment system extended into or below the brittle-plastic transition (BPT). Microstructural evidence suggests that gabbros and peridotites with high-temperature fabrics were dominantly deforming by dislocation-accommodated processes and diffusion creep. Recrystallized grain size piezometry yields differential stresses consistent with those predicted by dry-plagioclase flow laws. The temperature and stress at the BPT determined from laboratory-derived constitutive models agree well with the lowest temperatures and highest stresses estimated from gabbro mylonites. We suggest that the variation in abundance of mylonites among oceanic core complexes can be explained by variation in the depth of the BPT, which depends to a first order on the thermal structure and water content of newly forming oceanic lithosphere.
  • Preprint
    Ocean rises are products of variable mantle composition, temperature and focused melting
    ( 2014-12) Dick, Henry J. B. ; Zhou, Huaiyang
    Ocean ridges, where Earth’s tectonic plates are pulled apart, vary from more than 5- km depth in the Arctic to 750 m above sea level in Iceland. This huge relief is generally attributed to mantle plumes underlying mantle hotspots, areas of enormous volcanism marked by ocean islands. The plumes are thought to feed the mantle beneath adjacent ocean ridges. This results in thickened crust and ridge elevation to form ocean rises. The composition of mid-ocean ridge basalt, a direct function of mantle composition and temperature, varies systematically up ocean rises, but in a unique way for each rise. Here we present thermodynamic calculations of melt-evolution pathways to show that variations in both mantle temperature and source composition are required to explain rise basalts. Thus, lateral gradients in mantle temperature cannot be uniquely determined from basalt chemistry, and ocean rises can be supported by chemically buoyant mantle and/or by robust mantle plumes. Our calculations also indicate that melt is conserved and focused by percolative flow towards the overlying ridge, progressively interacting with the mantle to shallow depth. We conclude that most mantle melting occurs by an overlooked mechanism, focused melting, whereas fractional melting is a secondary process that is important largely at shallow depth.
  • Working Paper
    United States contributions to the Second International Indian Ocean Expedition (US IIOE-2)
    (US Steering Committee, 2018-10-23) Hood, Raleigh R. ; Beal, Lisa M. ; Benway, Heather M. ; Chandler, Cynthia L. ; Coles, Victoria J. ; Cutter, Gregory A. ; Dick, Henry J. B. ; Gangopadhyay, Avijit ; Goes, Joachim I. ; Humphris, Susan E. ; Landry, Michael R. ; Lloyd, Karen G. ; McPhaden, Michael J. ; Murtugudde, Raghu ; Subrahmanyam, Bulusu ; Susanto, R. Dwi ; Talley, Lynne D. ; Wiggert, Jerry D. ; Zhang, Chidong
    From the Preface: The purpose of this document is to motivate and coordinate U.S. participation in the Second International Indian Ocean Expedition (IIOE-2) by outlining a core set of research priorities that will accelerate our understanding of geologic, oceanic, and atmospheric processes and their interactions in the Indian Ocean. These research priorities have been developed by the U.S. IIOE-2 Steering Committee based on the outcomes of an interdisciplinary Indian Ocean science workshop held at the Scripps Institution of Oceanography on September 11-13, 2017. The workshop was attended by 70 scientists with expertise spanning climate, atmospheric sciences, and multiple sub-disciplines of oceanography. Workshop participants were largely drawn from U.S. academic institutions and government agencies, with a few experts invited from India, China, and France to provide a broader perspective on international programs and activities and opportunities for collaboration. These research priorities also build upon the previously developed International IIOE-2 Science Plan and Implementation Strategy. Outcomes from the workshop are condensed into five scientific themes: Upwelling, inter-ocean exchanges, monsoon dynamics, inter-basin contrasts, marine geology and the deep ocean. Each theme is identified with priority questions that the U.S. research community would like to address and the measurements that need to be made in the Indian Ocean to address them.
  • Preprint
    Thin crust and exposed mantle control sulfide differentiation in slow-spreading ridge magmas
    ( 2017-07) Ciazela, Jakub ; Dick, Henry J. B. ; Koepke, Juergen ; Pieterek, Bartosz ; Muszynski, Andrzej ; Botcharnikov, Roman ; Kuhn, Thomas
    Gabbroic veins enclosed in mantle peridotite from ocean core complexes next to oceanic transform faults demonstrate sub-crustal crystallization of silicate minerals from a MORB-like melt. Cooler lithosphere there may also affect sulfide crystallization and the metal budget of the lower and upper crust but the related sulfide behavior is poorly understood. Here, we use chalcophile elements to trace sulfide crystallization in a suite of MORB's erupted at the Kane Megamullion south of the Kane Fracture Zone along the Mid-Atlantic Ridge. Cool lithosphere there is inferred from a low magma supply, and lithostratigraphic evidence for thin crust with abundant mantle rock exposed to the seafloor (Dick et al., 2008). We show that the concentrations of Cu, Zn, As, Ga, Pb, Sb and Tl in the Kane Megamullion MORB's rise linearly with melt differentiation expressed by decreasing MgO and Ni content. The low-pressure fractional crystallization within the crust thus occurs at sulfur-undersaturated conditions. Sulfur-undersaturated MORB's are unusual. At the Kane Megamullion, however, the thin crust allows melt to more extensively interact with the shallow and serpentinized mantle. We argue that sulfur and chalcophile elements have been lost from the melt due to sulfide crystallization during melt-rock reaction in the shallow mantle.
  • Article
    Evolution of the Southwest Indian Ridge from 55°45′E to 62°E : changes in plate-boundary geometry since 26 Ma
    (American Geophysical Union, 2007-06-23) Baines, A. Graham ; Cheadle, Michael J. ; Dick, Henry J. B. ; Scheirer, Allegra Hosford ; John, Barbara E. ; Kusznir, Nick J. ; Matsumoto, Takeshi
    From 55°45′E to 58°45′E and from 60°30′E to 62°00′E, the ultraslow-spreading Southwest Indian Ridge (SWIR) consists of magmatic spreading segments separated by oblique amagmatic spreading segments, transform faults, and nontransform discontinuities. Off-axis magnetic and multibeam bathymetric data permit investigation of the evolution of this part of the SWIR. Individual magmatic segments show varying magnitudes and directions of asymmetric spreading, which requires that the shape of the plate boundary has changed significantly over time. In particular, since 26 Ma the Atlantis II transform fault grew by 90 km to reach 199 km, while a 45-km-long transform fault at 56°30′E shrank to become an 11 km offset nontransform discontinuity. Conversely, an oblique amagmatic segment at the center of a first-order spreading segment shows little change in orientation with time. These changes are consistent with the clockwise rotation of two ~450-km-wide first-order spreading segments between the Gallieni and Melville transform faults (52–60°E) to become more orthogonal to spreading. We suggest that suborthogonal first-order spreading segments reflect a stable configuration for mid-ocean ridges that maximizes upwelling rates in the asthenospheric mantle and results in a hotter and weaker ridge-axis that can more easily accommodate seafloor spreading.
  • Article
    An assessment of upper mantle heterogeneity based on abyssal peridotite isotopic compositions
    (American Geophysical Union, 2009-12-17) Warren, Jessica M. ; Shimizu, Nobumichi ; Sakaguchi, C. ; Dick, Henry J. B. ; Nakamura, E.
    Abyssal peridotites, the depleted solid residues of ocean ridge melting, are the most direct samples available to assess upper oceanic mantle composition. We present detailed isotope and trace element analyses of pyroxene mineral separates from Southwest Indian Ridge abyssal peridotites and pyroxenites in order to constrain the size and length scale of mantle heterogeneity. Our results demonstrate that the mantle can be highly heterogeneous to <1 km and even <0.1 m length scales. Examination of Nd isotopes in relation to modal, trace, and major element compositions indicate that the length scales and amplitudes of heterogeneities in abyssal peridotites reflect both ancient mantle heterogeneity and recent modification by melting, melt-rock reaction and melt crystallization. The isotopic and trace element compositions of pyroxenite veins in this study indicate that they are not direct remnants of recycled oceanic crust, but instead are formed by recent melt crystallization. Combined with existing data sets, the results show that the average global isotopic composition of peridotites is similar to that of mid-ocean ridge basalts, though peridotites extend to significantly more depleted 143Nd/144Nd and 87Sr/86Sr. Standard isotope evolution models of upper mantle composition do not predict the full isotopic range observed among abyssal peridotites, as they do not account adequately for the complexities of ancient and recent melting processes.