Baker
Edward T.
Baker
Edward T.
No Thumbnail Available
14 results
Search Results
Now showing
1 - 14 of 14
-
ArticleDetection of an unusually large hydrothermal event plume above the slow-spreading Carlsberg Ridge : NW Indian Ocean(American Geophysical Union, 2006-05-31) Murton, Bramley J. ; Baker, Edward T. ; Sands, Carla M. ; German, Christopher R.About 90% of Earth's volcanism occurs along the global mid-ocean ridge system. Here, sporadic volcanic and tectonic activity is thought to cause cataclysmic release of hydrothermal fluids, forming event plumes. Each plume often contains as much hydrothermal effluent and heat as chronic hydrothermal venting from a typical vent site discharges during a year. To date, only a few event plumes have been detected, and only above intermediate-rate spreading ridges in the Pacific. Here, we report the first evidence for an unusually large event plume that originated from the slow-spreading (3 cm/yr full-rate) Carlsberg Ridge in the NW Indian Ocean. At 70 km long, up to 4540 km3 in volume and with up to 24 × 1016 J of excess heat, this event plume was substantially larger than previous ones and demonstrates that dispersion of hydrothermal heat and biological products from slow spreading ridges may be more significant and effective than hitherto imagined.
-
ArticleHydrothermal venting in magma deserts : the ultraslow-spreading Gakkel and Southwest Indian Ridges(American Geophysical Union, 2004-08-18) Baker, Edward T. ; Edmonds, Henrietta N. ; Michael, Peter J. ; Bach, Wolfgang ; Dick, Henry J. B. ; Snow, Jonathan E. ; Walker, Sharon L. ; Banerjee, Neil R. ; Langmuir, Charles H.Detailed hydrothermal surveys over ridges with spreading rates of 50–150 mm/yr have found a linear relation between spreading rate and the spatial frequency of hydrothermal venting, but the validity of this relation at slow and ultraslow ridges is unproved. Here we compare hydrothermal plume surveys along three sections of the Gakkel Ridge (Arctic Ocean) and the Southwest Indian Ridge (SWIR) to determine if hydrothermal activity is similarly distributed among these ultraslow ridge sections and if these distributions follow the hypothesized linear trend derived from surveys along fast ridges. Along the Gakkel Ridge, most apparent vent sites occur on volcanic highs, and the extraordinarily weak vertical density gradient of the deep Arctic permits plumes to rise above the axial bathymetry. Individual plumes can thus be extensively dispersed along axis, to distances >200 km, and ∼75% of the total axial length surveyed is overlain by plumes. Detailed mapping of these plumes points to only 9–10 active sites in 850 km, however, yielding a site frequency F s , sites/100 km of ridge length, of 1.1–1.2. Plumes detected along the SWIR are considerably less extensive for two reasons: an apparent paucity of active vent fields on volcanic highs and a normal deep-ocean density gradient that prevents extended plume rise. Along a western SWIR section (10°–23°E) we identify 3–8 sites, so F s = 0.3–0.8; along a previously surveyed 440 km section of the eastern SWIR (58°–66°E), 6 sites yield F s = 1.3. Plotting spreading rate (us) versus F s, the ultraslow ridges and eight other ridge sections, spanning the global range of spreading rate, establish a robust linear trend (F s = 0.98 + 0.015us), implying that the long-term heat supply is the first-order control on the global distribution of hydrothermal activity. Normalizing F s to the delivery rate of basaltic magma suggests that ultraslow ridges are several times more efficient than faster-spreading ridges in supporting active vent fields. This increased efficiency could derive from some combination of three-dimensional magma focusing at volcanic centers, deep mining of heat from gabbroic intrusions and direct cooling of the upper mantle, and nonmagmatic heat supplied by exothermic serpentinization.
-
ArticleFlux measurements of explosive degassing using a yearlong hydroacoustic record at an erupting submarine volcano(American Geophysical Union, 2012-11-29) Dziak, Robert P. ; Baker, Edward T. ; Shaw, Alison M. ; Bohnenstiehl, DelWayne R. ; Chadwick, William W. ; Haxel, Joseph H. ; Matsumoto, Haru ; Walker, Sharon L.The output of gas and tephra from volcanoes is an inherently disorganized process that makes reliable flux estimates challenging to obtain. Continuous monitoring of gas flux has been achieved in only a few instances at subaerial volcanoes, but never for submarine volcanoes. Here we use the first sustained (yearlong) hydroacoustic monitoring of an erupting submarine volcano (NW Rota-1, Mariana arc) to make calculations of explosive gas flux from a volcano into the ocean. Bursts of Strombolian explosive degassing at the volcano summit (520 m deep) occurred at 1–2 min intervals during the entire 12-month hydrophone record and commonly exhibited cyclic step-function changes between high and low intensity. Total gas flux calculated from the hydroacoustic record is 5.4 ± 0.6 Tg a−1, where the magmatic gases driving eruptions at NW Rota-1 are primarily H2O, SO2, and CO2. Instantaneous fluxes varied by a factor of ∼100 over the deployment. Using melt inclusion information to estimate the concentration of CO2 in the explosive gases as 6.9 ± 0.7 wt %, we calculate an annual CO2 eruption flux of 0.4 ± 0.1 Tg a−1. This result is within the range of measured CO2 fluxes at continuously erupting subaerial volcanoes, and represents ∼0.2–0.6% of the annual estimated output of CO2from all subaerial arc volcanoes, and ∼0.4–0.6% of the mid-ocean ridge flux. The multiyear eruptive history of NW Rota-1 demonstrates that submarine volcanoes can be significant and sustained sources of CO2 to the shallow ocean.
-
DatasetData collected from Miniature Autonomous Plume Recorders (MAPRs) deployed near the Axial Seamount on the Juan de Fuca Ridge on R/V Thomas G. Thompson TN327 in August 2015 and collected in July 2017.(Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu, 2019-04-10) Baker, Edward T. ; Butterfield, David A.Data collected from Miniature Autonomous Plume Recorders (MAPRs) deployed near the Axial Seamount on the Juan de Fuca Ridge on R/V Thomas G. Thompson TN327 in August 2015 and collected in July 2017. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/731092
-
DatasetDOC, POC, d13C-POC, PN from a diffuse vent in West Mata sampled in May 2009 using ROV Jason II deployed from R/V Thomas Thompson.(Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu, 2021-04-15) Lin, Huei-Ting ; Butterfield, David A. ; Baker, Edward T. ; Resing, Joseph A. ; Huber, Julie ; Cowen, JamesDOC, POC, d13C-POC, PN from a diffuse vent in West Mata sampled in May 2009 using ROV Jason II deployed from R/V Thomas Thompson. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/844580
-
ArticleAn authoritative global database for active submarine hydrothermal vent fields(John Wiley & Sons, 2013-11-19) Beaulieu, Stace E. ; Baker, Edward T. ; German, Christopher R. ; Maffei, Andrew R.The InterRidge Vents Database is available online as the authoritative reference for locations of active submarine hydrothermal vent fields. Here we describe the revision of the database to an open source content management system and conduct a meta-analysis of the global distribution of known active vent fields. The number of known active vent fields has almost doubled in the past decade (521 as of year 2009), with about half visually confirmed and others inferred active from physical and chemical clues. Although previously known mainly from mid-ocean ridges (MORs), active vent fields at MORs now comprise only half of the total known, with about a quarter each now known at volcanic arcs and back-arc spreading centers. Discoveries in arc and back-arc settings resulted in an increase in known vent fields within exclusive economic zones, consequently reducing the proportion known in high seas to one third. The increase in known vent fields reflects a number of factors, including increased national and commercial interests in seafloor hydrothermal deposits as mineral resources. The purpose of the database now extends beyond academic research and education and into marine policy and management, with at least 18% of known vent fields in areas granted or pending applications for mineral prospecting and 8% in marine protected areas.
-
ArticleHydrothermal discharge during submarine eruptions : the importance of detection, response, and new technology(The Oceanography Society, 2012-03) Baker, Edward T. ; Chadwick, William W. ; Cowen, James P. ; Dziak, Robert P. ; Rubin, Kenneth H. ; Fornari, Daniel J.Submarine volcanic eruptions and intrusions construct new oceanic crust and build long chains of volcanic islands and vast submarine plateaus. Magmatic events are a primary agent for the transfer of heat, chemicals, and even microbes from the crust to the ocean, but the processes that control these transfers are poorly understood. The 1980s discovery that mid-ocean ridge eruptions are often associated with brief releases of immense volumes of hot fluids ("event plumes") spurred interest in methods for detecting the onset of eruptions or intrusions and for rapidly organizing seagoing response efforts. Since then, some 35 magmatic events have been recognized and responded to on mid-ocean ridges and at seamounts in both volcanic arc and intraplate settings. Field responses at mid-ocean ridges have found that event plumes occur over a wide range of eruption styles and sizes, and thus may be a common consequence of ridge eruptions. The source(s) of event plume fluids are still debated. Eruptions detected at ridges generally have high effusion rates and short durations (hours to days), whereas field responses at arc volcanic cones have found eruptions with very low effusion rates and durations on the scale of years. New approaches to the study of submarine magmatic events include the development of autonomous vehicles for detection and response, and the establishment of permanent seafloor observatories at likely future eruption sites.
-
ArticleVailulu'u Seamount, Samoa : life and death on an active submarine volcano(National Academy of Sciences, 2006-04-13) Staudigel, Hubert ; Hart, Stanley R. ; Pile, Adele ; Bailey, Bradley E. ; Baker, Edward T. ; Brooke, Sandra ; Connelly, Douglas P. ; Haucke, Lisa ; German, Christopher R. ; Hudson, Ian ; Jones, Daniel O. B. ; Koppers, Anthony A. P. ; Konter, Jasper G. ; Lee, Ray ; Pietsch, Theodore W. ; Tebo, Bradley M. ; Templeton, Alexis S. ; Zierenberg, Robert ; Young, Craig M.Submersible exploration of the Samoan hotspot revealed a new, 300-m-tall, volcanic cone, named Nafanua, in the summit crater of Vailulu'u seamount. Nafanua grew from the 1,000-m-deep crater floor in <4 years and could reach the sea surface within decades. Vents fill Vailulu'u crater with a thick suspension of particulates and apparently toxic fluids that mix with seawater entering from the crater breaches. Low-temperature vents form Fe oxide chimneys in many locations and up to 1-m-thick layers of hydrothermal Fe floc on Nafanua. High-temperature (81°C) hydrothermal vents in the northern moat (945-m water depth) produce acidic fluids (pH 2.7) with rising droplets of (probably) liquid CO2. The Nafanua summit vent area is inhabited by a thriving population of eels (Dysommina rugosa) that feed on midwater shrimp probably concentrated by anticyclonic currents at the volcano summit and rim. The moat and crater floor around the new volcano are littered with dead metazoans that apparently died from exposure to hydrothermal emissions. Acid-tolerant polychaetes (Polynoidae) live in this environment, apparently feeding on bacteria from decaying fish carcasses. Vailulu'u is an unpredictable and very active underwater volcano presenting a potential long-term volcanic hazard. Although eels thrive in hydrothermal vents at the summit of Nafanua, venting elsewhere in the crater causes mass mortality. Paradoxically, the same anticyclonic currents that deliver food to the eels may also concentrate a wide variety of nektonic animals in a death trap of toxic hydrothermal fluids.
-
PreprintRapid dispersal of a hydrothermal plume by turbulent mixing( 2010-08-23) Walter, Maren ; Mertens, Christian ; Stober, Uwe ; German, Christopher R. ; Yoerger, Dana R. ; Sultenfuß, Jurgen ; Rhein, Monika ; Melchert, Bernd ; Baker, Edward T.The water column imprint of the hydrothermal plume observed at the Nibelungen field (8°18' S 13°30' W) is highly variable in space and time. The off-axis location of the site, along the southern boundary of a non-transform ridge offset at the joint between two segments of the southern Mid-Atlantic Ridge, is characterized by complex, rugged topography, and thus favorable for the generation of internal tides, subsequent internal wave breaking, and associated vertical mixing in the water column. We have used towed transects and vertical profiles of stratification, turbidity, and direct current measurements to investigate the strength of turbulent mixing in the vicinity of the vent site and the adjacent rift valley, and its temporal and spatial variability in relation to the plume dispersal. Turbulent diffusivities Kp were calculated from temperature inversions via Thorpe scales. Heightened mixing (compared to open ocean values) was observed in the whole rift valley within an order of Kp around 10-3 m2 s-1. The mixing close to the vent site was even more elevated, with an average of Kp = 4 x 10-2 m2 s-1. The mixing, as well as the flow field, exhibited a strong tidal cycle, with strong currents and mixing at the non-buoyant plume level during ebb flow. Periods of strong mixing were associated with increased internal wave activity and frequent occurrence of turbulent overturns. Additional effects of mixing on plume dispersal include bifurcation of the particle plume, likely as a result of the interplay between the modulated mixing strength and current speed, as well as high frequency internal waves in the effluent plume layer, possibly triggered by the buoyant plume via nonlinear interaction with the elevated background turbulence or penetrative convection.
-
ArticleEruptive modes and hiatus of volcanism at West Mata seamount, NE Lau basin : 1996–2012(John Wiley & Sons, 2014-10-31) Embley, Robert W. ; Merle, Susan G. ; Baker, Edward T. ; Rubin, Kenneth H. ; Lupton, John E. ; Resing, Joseph A. ; Dziak, Robert P. ; Lilley, Marvin D. ; Chadwick, William W. ; Shank, Timothy M. ; Greene, Ronald ; Walker, Sharon L. ; Haxel, Joseph H. ; Olson, Eric J. ; Baumberger, TamaraWe present multiple lines of evidence for years to decade-long changes in the location and character of volcanic activity at West Mata seamount in the NE Lau basin over a 16 year period, and a hiatus in summit eruptions from early 2011 to at least September 2012. Boninite lava and pyroclasts were observed erupting from its summit in 2009, and hydroacoustic data from a succession of hydrophones moored nearby show near-continuous eruptive activity from January 2009 to early 2011. Successive differencing of seven multibeam bathymetric surveys of the volcano made in the 1996–2012 period reveals a pattern of extended constructional volcanism on the summit and northwest flank punctuated by eruptions along the volcano's WSW rift zone (WSWRZ). Away from the summit, the volumetrically largest eruption during the observational period occurred between May 2010 and November 2011 at ∼2920 m depth near the base of the WSWRZ. The (nearly) equally long ENE rift zone did not experience any volcanic activity during the 1996–2012 period. The cessation of summit volcanism recorded on the moored hydrophone was accompanied or followed by the formation of a small summit crater and a landslide on the eastern flank. Water column sensors, analysis of gas samples in the overlying hydrothermal plume and dives with a remotely operated vehicle in September 2012 confirmed that the summit eruption had ceased. Based on the historical eruption rates calculated using the bathymetric differencing technique, the volcano could be as young as several thousand years.
-
ArticleRidge-hotspot interactions : what mid-ocean ridges tell us about deep Earth processes(Oceanography Society, 2007-03) Dyment, Jerome ; Lin, Jian ; Baker, Edward T.Earth is a thermal engine that dissipates its internal heat primarily through convection. The buoyant rise of hot material transports heat to the surface from the deep interior while colder material sinks at subduction zones. Mid-ocean ridges and hotspots are major expressions of heat dissipation at Earth’s surface, as evidenced by their abundant volcanic activity. Ridges and hotspots, however, could differ significantly in their origins. Ridges are linear features that wind more than 60,000 km around the globe, constituting the major diverging boundaries of Earth’s tectonic plates. Hotspots, on the other hand, are localized regions of abnormally robust magmatism and distinctive geochemical anomalies.
-
ArticleHydrothermal venting at Vailulu'u Seamount : the smoking end of the Samoan chain(American Geophysical Union, 2004-02-10) Staudigel, Hubert ; Hart, Stanley R. ; Koppers, Anthony A. P. ; Constable, C. ; Workman, Rhea K. ; Kurz, Mark D. ; Baker, Edward T.The summit crater of Vailulu'u Seamount, the youngest volcano in the Samoan chain, hosts an active hydrothermal system with profound impact on the ocean water column inside and around its crater (2 km wide and 407 m deep at a 593 m summit depth). The turbidity of the ocean water reaches 1.4 NTU, values that are higher than in any other submarine hydrothermal system. The water is enriched in hydrothermal Mn (3.8 ppb) and 3He (1 × 10−11 cc/g) and we measured water temperature anomalies near the crater floor up to 0.2°C. The hydrothermal system shows complex interactions with the ocean currents around Vailulu'u that include tidally-modulated vertical motions of about 40–50 m, and replenishment of waters into the crater through breaches in the upper half of the crater wall. Inside and outside potential density gradients suggest that hydrothermal venting exports substantial amounts of water from the crater (1.3 ± 0.2 × 108 m3/day), which is in good agreement with fluxes obtained from a tracer release experiment inside the crater of Vailulu'u (0.8 × 108 m3/day [Hart et al., 2003]). This mass flux, in combination with the differences in the inside and outside crater temperature, yields a power output of around 760 megawatts, the equivalent of 20–100 MOR black smokers. The Mn output of 300 kg/day is approximately ten times the output of a single black smoker.
-
ArticleVolcanic eruptions in the deep sea(The Oceanography Society, 2012-03) Rubin, Kenneth H. ; Soule, Samuel A. ; Chadwick, William W. ; Fornari, Daniel J. ; Clague, David A. ; Embley, Robert W. ; Baker, Edward T. ; Perfit, Michael R. ; Caress, David W. ; Dziak, Robert P.Volcanic eruptions are important events in Earth's cycle of magma generation and crustal construction. Over durations of hours to years, eruptions produce new deposits of lava and/or fragmentary ejecta, transfer heat and magmatic volatiles from Earth's interior to the overlying air or seawater, and significantly modify the landscape and perturb local ecosystems. Today and through most of geological history, the greatest number and volume of volcanic eruptions on Earth have occurred in the deep ocean along mid-ocean ridges, near subduction zones, on oceanic plateaus, and on thousands of mid-plate seamounts. However, deep-sea eruptions (> 500 m depth) are much more difficult to detect and observe than subaerial eruptions, so comparatively little is known about them. Great strides have been made in eruption detection, response speed, and observational detail since the first recognition of a deep submarine eruption at a mid-ocean ridge 25 years ago. Studies of ongoing or recent deep submarine eruptions reveal information about their sizes, durations, frequencies, styles, and environmental impacts. Ultimately, magma formation and accumulation in the upper mantle and crust, plus local tectonic stress fields, dictate when, where, and how often submarine eruptions occur, whereas eruption depth, magma composition, conditions of volatile segregation, and tectonic setting determine submarine eruption style.
-
ArticleOrganic biogeochemistry in West Mata, NE Kau hydrothermal vent fields(American Geophysical Union, 2021-03-17) Lin, Huei-Ting ; Butterfield, David A. ; Baker, Edward T. ; Resing, Joseph A. ; Huber, Julie A. ; Cowen, James P.The impact of submarine hydrothermal systems on organic carbon in the ocean—one of the largest fixed carbon reservoirs on Earth—could be profound. Yet, different vent sites show diverse fluid chemical compositions and the subsequent biological responses. Observations from various vent sites are to evaluate hydrothermal systems' impact on the ocean carbon cycle. A response cruise in May 2009 to an on-going submarine eruption at West Mata Volcano, northeast Lau Basin, provided an opportunity to quantify the organic matter production in a back-arc spreading hydrothermal system. Hydrothermal vent fluids contained elevated dissolved organic carbon, particulate organic carbon (POC), and particulate nitrogen (PN) relative to background seawater. The δ13C-POC values for suspended particles in the diffuse vent fluids (−15.5‰ and −12.3‰) are distinct from those in background seawater (−23 ± 1‰), indicative of unique carbon synthesis pathways of the vent microbes from the seawater counterparts. The first dissolved organic nitrogen concentrations reported for diffuse vents were similar to or higher than those for background seawater. Enhanced nitrogen fixation and denitrification removed 37%–89% of the total dissolved nitrogen in the recharging background seawater in the hydrothermal vent flow paths. The hydrothermal plume samples were enriched in POC and PN, indicating enhanced biological production. The total “dark” organic carbon production within the plume matches the thermodynamic prediction based on available reducing chemical substances supplied to the plume. This research combines the measured organic carbon contents with thermodynamic modeled results and demonstrates the importance of hydrothermal activities on the water column carbon production in the deep ocean.