Harder
Steven H.
Harder
Steven H.
No Thumbnail Available
Search Results
Now showing
1 - 5 of 5
-
ArticleSeismic imaging of deep low-velocity zone beneath the Dead Sea basin and transform fault : implications for strain localization and crustal rigidity(American Geophysical Union, 2006-12-23) ten Brink, Uri S. ; Al-Zoubi, Abdallah S. ; Flores, Claudia H. ; Rotstein, Yair ; Qabbani, Isam ; Harder, Steven H. ; Keller, G. RandyNew seismic observations from the Dead Sea basin (DSB), a large pull-apart basin along the Dead Sea transform (DST) plate boundary, show a low velocity zone extending to a depth of 18 km under the basin. The lower crust and Moho are not perturbed. These observations are incompatible with the current view of mid-crustal strength at low temperatures and with support of the basin's negative load by a rigid elastic plate. Strain softening in the middle crust is invoked to explain the isostatic compensation and the rapid subsidence of the basin during the Pleistocene. Whether the deformation is influenced by the presence of fluids and by a long history of seismic activity on the DST, and what the exact softening mechanism is, remain open questions. The uplift surrounding the DST also appears to be an upper crustal phenomenon but its relationship to a mid-crustal strength minimum is less clear. The shear deformation associated with the transform plate boundary motion appears, on the other hand, to cut throughout the entire crust.
-
ArticleConstraints on Appalachian orogenesis and continental rifting in the Southeastern United States from wide-angle seismic data(American Geophysical Union, 2019-06-24) Marzen, Rachel E. ; Shillington, Donna J. ; Lizarralde, Daniel ; Harder, Steven H.The Southeastern United States is an ideal location to understand the interactions between mountain building, rifting, and magmatism. Line 2 of the Suwannee suture and Georgia Rift basin refraction seismic experiment in eastern Georgia extends 420 km from the Inner Piedmont to the Georgia coast. We model crustal and upper mantle VP and upper crustal VS. The most dramatic model transition occurs at the Higgins‐Zietz magnetic boundary, north of which we observe higher upper crustal VP and VS and lower VP/VS. These observations support the interpretation of the Higgins‐Zietz boundary as the Alleghanian suture. North of this boundary, we observe a low‐velocity zone less than 2 km thick at ~5‐km depth, consistent with a layer of sheared metasedimentary rocks that forms the Appalachian detachment. To the southeast, we interpret synrift sediments and decreasing crustal thickness to represent crustal thinning associated with the South Georgia Rift Basin and subsequent continental breakup. The correspondence of the northern limit of thinning with the interpreted suture location suggests that the orogenic suture zone and/or the Gondwanan crust to the south of the suture helped localize subsequent extension. Lower crustal VP and VP/VS preclude volumetrically significant mafic magmatic addition during rifting or associated with the Central Atlantic Magmatic Province. Structures formed during orogenesis and/or extension appear to influence seismicity in Georgia today; earthquakes localize along a steeply dipping zone that coincides with the northern edge of the South Georgia Basin and the change in upper crustal velocities at the Higgins‐Zietz boundary.
-
ArticleSeismic evidence for fluids in fault zones on top of the subducting Cocos Plate beneath Costa Rica(John Wiley & Sons, 2010-03-09) Van Avendonk, Harm J. A. ; Holbrook, W. Steven ; Lizarralde, Daniel ; Mora, Mauricio M. ; Harder, Steven H. ; Bullock, Andrew D. ; Alvarado, Guillermo E. ; Ramirez, Carlos J.In the 2005 TICOCAVA explosion seismology study in Costa Rica we observed crustal turning waves with a dominant frequency of ~10 Hz on a linear array of short-period seismometers from the Pacific Ocean to the Caribbean Sea. On one of the shot records, from Shot 21 in the backarc of the Cordillera Central, we also observed two seismic phases with an unusually high dominant frequency (~20 Hz). These two phases were recorded in the forearc region of central Costa Rica and arrived ~7 s apart and 30 to 40 s after the detonation of Shot 21. We considered the possibility that these secondary arrivals were produced by a local earthquake that may have happened during the active-source seismic experiment. Such high-frequency phases following Shot 21 were not recorded after Shots 22, 23, and 24, all in the backarc of Costa Rica, which might suggest that they were produced by some other source. However, earthquake dislocation models cannot produce seismic waves of such high frequency with significant amplitude. In addition, we would have expected to see more arrivals from such an earthquake on other seismic stations in central Costa Rica. We therefore investigate whether the high-frequency arrivals may be the result of a deep seismic reflection from the subducting Cocos plate. The timing of these phases is consistent with a shear wave from Shot 21 that was reflected as a compressional (SxP) and a shear (SxS) wave at the top of the subducting Cocos slab between 35 and 55 km depth. The shift in dominant frequency from ~10 Hz in the downgoing seismic wave to ~20 Hz in the reflected waves requires a particular seismic structure at the interface between the subducting slab and the forearc mantle in order to produce a substantial increase in reflection coefficients with frequency. The spectral amplitude characteristics of the SxP and SxS phases from Shot 21 are consistent with a very high Vp/Vs ratio of 6 in ~5 m thick, slab-parallel layers. This result suggests that a system of thin shear zones near the plate interface beneath the forearc is occupied by hydrous fluids under near-lithostatic conditions. The overpressured shear zone probably takes up fluids from the downgoing slab, and it may control the lower limit of the seismogenic zone.
-
ArticleCrustal structure across the Costa Rican Volcanic Arc(John Wiley & Sons, 2013-04-29) Hayes, Jorden L. ; Holbrook, W. Steven ; Lizarralde, Daniel ; Van Avendonk, Harm J. A. ; Bullock, Andrew D. ; Mora, Mauricio M. ; Harder, Steven H. ; Alvarado, Guillermo E. ; Ramirez, Carlos J.Island arcs are proposed to be essential building blocks for the crustal growth of continents; however, island arcs and continents are fundamentally different in bulk composition: mafic and felsic, respectively. The substrate upon which arcs are built (oceanic crust versus large igneous province) may have a strong influence on crustal genesis. We present results from an across-arc wide-angle seismic survey of the Costa Rican volcanic front which test the hypothesis that juvenile continental crust is actively forming at this location. Travel-time tomography constrains velocities in the upper arc to a depth of ~15 km where average velocities are <6.5 km/s. The upper 5 km of crust is constrained by velocities between 4.0 and 5.5 km/s, which likely represent sediments, volcaniclastics, flows, and small intrusions. Between 5 and 15 km depth, velocities increase slowly from 5.5 to 6.5 km/s. Crustal thickness and lower crustal velocities are roughly constrained by reflections from an inferred crust-mantle transition zone. Crustal thickness beneath the volcanic front in Costa Rica is ~40 km with best-fit average lower-crustal velocities between 6.8 and 7.1 km/s. Overall, velocities across the arc in central Costa Rica are at the high-velocity extreme of bulk continental crust velocities and are lower than modern island arc velocities, suggesting that continental compositions are created at this location. These data suggest that preexisting thick crust of the Caribbean Large Igneous Province has a measurable effect on bulk composition. This thickened arc crust may be a density filter for mafic material and thereby support differentiation toward continental compositions.
-
ArticleLimited and localized magmatism in the Central Atlantic Magmatic Province(Nature Research, 2020-07-07) Marzen, Rachel E. ; Shillington, Donna J. ; Lizarralde, Daniel ; Knapp, James H. ; Heffner, David M. ; Davis, Joshua K. ; Harder, Steven H.The Central Atlantic Magmatic Province (CAMP) is the most aerially extensive magmatic event in Earth’s history, but many questions remain about its origin, volume, and distribution. Despite many observations of CAMP magmatism near Earth’s surface, few constraints exist on CAMP intrusions at depth. Here we present detailed constraints on crustal and upper mantle structure from wide-angle seismic data across the Triassic South Georgia Rift that formed shortly before CAMP. Lower crustal magmatism is concentrated where synrift sedimentary fill is thickest and the crust is thinnest, suggesting that lithospheric thinning influenced the locus and volume of magmatism. The limited distribution of lower crustal intrusions implies modest total CAMP volumes of 85,000 to 169,000 km3 beneath the South Georgia Rift, consistent with moderately elevated mantle potential temperatures (<1500 °C). These results suggest that CAMP magmatism in the South Georgia Rift is caused by syn-rift decompression melting of a warm, enriched mantle.