Volkman
John K.
Volkman
John K.
No Thumbnail Available
Search Results
Now showing
1 - 2 of 2
-
PreprintRapid sulfurisation of highly branched isoprenoid (HBI) alkenes in sulfidic Holocene sediments from Ellis Fjord, Antarctica( 2006-04-03) Sinninghe Damste, Jaap S. ; Rijpstra, W. Irene C. ; Coolen, Marco J. L. ; Schouten, Stefan ; Volkman, John K.Samples of particulate organic matter from the water column and anoxic Holocene sediment layers from the Small Meromictic Basin (SMB) in Ellis Fjord (eastern Antarctica) were analyzed to study the early incorporation of reduced inorganic sulfur species into highly branched isoprenoid (HBI) alkenes. HBIs were not detected in the water column samples from austral winter, whereas compounds containing the C25 HBI skeleton were abundant in all analyzed Holocene sediment layers. The structure of the C25:2 HBI alkene together with its enriched stable carbon isotopic composition suggest that the HBI alkene is produced by a diatom or diatoms probably belonging to the Navicula genus present in the sea-ice which covers the area most of the year. Within just 500 years of deposition, all of the HBI alkene was sulfurised. A mixture of products was formed, including components tentatively identified as a C25 HBI thiane and three S-containing dimers composed of two C25:1 HBI skeletons linked together by a sulfide bond. Most of the HBI alkene, however, was converted to polar S-containing compounds. The observed reaction rate for sulfurisation the C25:2 HBI alkene is the highest observed so far in natural systems. Sterols and other lipids known to be prone to sulfurisation were only minimally sulfurised under these depositional conditions. The reason for this is presently unclear.
-
ArticleIdentification of organic matter sources in sulfidic late Holocene Antarctic fjord sediments from fossil rDNA sequence analysis(American Geophysical Union, 2007-05-09) Coolen, Marco J. L. ; Volkman, John K. ; Abbas, Ben ; Muyzer, Gerard ; Schouten, Stefan ; Sinninghe Damste, Jaap S.The 18S ribosomal DNA (rDNA) isolated from sulfidic Holocene sediments and particulate organic matter in the water column of the stratified Small Meromictic Basin (SMB) in Ellis Fjord (eastern Antarctica) was analyzed to identify possible biological sources of organic matter. Previous work had shown that the sediments contained numerous diatom frustules and high contents of a highly branched isoprenoid (HBI) C25:2 alkene (which is a specific biomarker of certain species of the diatom genera Navicula, Haslea, Pleurosigma, or Rhizosolenia), so we focused our search on preserved fossil 18S rDNA of diatoms using sensitive polymerase chain reaction (PCR) approaches. We did not find diatom-derived fossil 18S rDNA using general eukaryotic primers, and even when we used primers selective for diatom 18S rDNA, we only identified a Chaetoceros phylotype, which is known to form cysts in the SMB but is not a likely source of the C25:2 HBI. When we used PCR/denaturing gradient gel electrophoresis methods specific to phylotypes within the HBI-biosynthesizing genera, we were able to identify three phylotypes in the sediments related to HBI-producing strains of the genera Haslea and Navicula. The ancient DNA data thus provided a limited, but valuable, view of the diversity of late Holocene primary producers with a particular bias to specific components of the biota that were better preserved such as the Chaetoceros cysts. This use of paleogenetics also revealed unexpected possible sources of organic matter such as novel stramenopiles for which no specific lipid biomarkers are known and thus would not have been identified based on traditional lipid stratigraphy alone.