Beavers
Kelsey
Beavers
Kelsey
No Thumbnail Available
Search Results
Now showing
1 - 3 of 3
-
ArticleAlphaflexivirus genomes in stony coral tissue loss disease-affected, disease-exposed, and disease-unexposed coral colonies in the U.S. Virgin Islands(American Society for Microbiology, 2022-02-17) Veglia, Alex J. ; Beavers, Kelsey ; Van Buren, Emily W. ; Meiling, Sonora S. ; Muller, Erinn ; Smith, Tyler B. ; Holstein, Daniel M. ; Apprill, Amy ; Brandt, Marilyn ; Mydlarz, Laura ; Correa, Adrienne M.S.Stony coral tissue loss disease (SCTLD) is decimating Caribbean corals. Here, through the metatranscriptomic assembly and annotation of two alphaflexivirus-like strains, we provide genomic evidence of filamentous viruses in SCTLD-affected, -exposed, and -unexposed coral colonies. These data will assist in clarifying the roles of viruses in SCTLD.
-
DatasetViral consortia in Stony Coral Tissue Loss Disease- affected, disease-exposed, and disease-unexposed coral colonies from a transmission experiment conducted on samples collected from Rupert’s Rock in St. Thomas, U.S. Virgin Islands in 2019(Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu, 2022-11-04) Veglia, Alex J. ; Beavers, Kelsey ; Mydlarz, Laura ; Correa, Adrienne M.S.To understand the extent to which (if any) viruses are associated with stony coral tissue loss disease (SCTLD) in stony corals of the U.S. Virgin Islands, we leveraged viral metatranscriptomes generated from SCTLD-affected, SCTLD-exposed, and control (unexposed) coral holobionts sampled during a SCTLD transmission experiment. Sequence data is available in NCBI Genbank under BioProject accession PRJNA788911. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/875283
-
ArticleStony coral tissue loss disease induces transcriptional signatures of in situ degradation of dysfunctional Symbiodiniaceae(Nature Research, 2023-05-22) Beavers, Kelsey M. ; Van Buren, Emily W. ; Rossin, Ashley M. ; Emery, Madison A. ; Veglia, Alex J. ; Karrick, Carly E. ; MacKnight, Nicholas J. ; Dimos, Bradford A. ; Meiling, Sonora S. ; Smith, Tyler B. ; Apprill, Amy ; Muller, Erinn M. ; Holstein, Daniel M. ; Correa, Adrienne M. S. ; Brandt, Marilyn E. ; Mydlarz, Laura D.Stony coral tissue loss disease (SCTLD), one of the most pervasive and virulent coral diseases on record, affects over 22 species of reef-building coral and is decimating reefs throughout the Caribbean. To understand how different coral species and their algal symbionts (family Symbiodiniaceae) respond to this disease, we examine the gene expression profiles of colonies of five species of coral from a SCTLD transmission experiment. The included species vary in their purported susceptibilities to SCTLD, and we use this to inform gene expression analyses of both the coral animal and their Symbiodiniaceae. We identify orthologous coral genes exhibiting lineage-specific differences in expression that correlate to disease susceptibility, as well as genes that are differentially expressed in all coral species in response to SCTLD infection. We find that SCTLD infection induces increased expression of rab7, an established marker of in situ degradation of dysfunctional Symbiodiniaceae, in all coral species accompanied by genus-level shifts in Symbiodiniaceae photosystem and metabolism gene expression. Overall, our results indicate that SCTLD infection induces symbiophagy across coral species and that the severity of disease is influenced by Symbiodiniaceae identity.