French-McCay
Deborah P.
French-McCay
Deborah P.
No Thumbnail Available
Search Results
Now showing
1 - 2 of 2
-
ArticlePhotochemical oxidation of oil reduced the effectiveness of aerial dispersants applied in response to the Deepwater Horizon spill(American Chemical Society, 2018-04-25) Ward, Collin P. ; Armstrong, Cassia J. ; Conmy, Robyn N. ; French-McCay, Deborah P. ; Reddy, Christopher M.Chemical dispersants are one of many tools used to mitigate the overall environmental impact of oil spills. In principle, dispersants break up floating oil into small droplets that disperse into the water column where they are subject to multiple fate and transport processes. The effectiveness of dispersants typically decreases as oil weathers in the environment. This decrease in effectiveness is often attributed to evaporation and emulsification, with the contribution of photochemical weathering assumed to be negligible. Here, we aim to test this assumption using Macondo well oil released during the Deepwater Horizon spill as a case study. Our results indicate that the effects of photochemical weathering on Deepwater Horizon oil properties and dispersant effectiveness can greatly outweigh the effects of evaporative weathering. The decrease in dispersant effectiveness after light exposure was principally driven by the decreased solubility of photo-oxidized crude oil residues in the solvent system that comprises COREXIT EC9500A. Kinetic modeling combined with geospatial analysis demonstrated that a considerable fraction of aerial applications targeting Deepwater Horizon surface oil had low dispersant effectiveness. Collectively, the results of this study challenge the paradigm that photochemical weathering has a negligible impact on the effectiveness of oil spill response and provide critical insights into the “window of opportunity” to apply chemical dispersants in response to oil spills in sunlit waters.
-
ArticleNatural and unnatural oil slicks in the Gulf of Mexico(John Wiley & Sons, 2015-12-28) MacDonald, Ian R. ; Garcia-Pineda, Oscar ; Beet, Andrew R. ; Daneshgar Asl, Samira ; Feng, Lian ; Graettinger, George D. ; French-McCay, Deborah P. ; Holmes, James ; Hu, Chuanmin ; Huffer, Fred W. ; Leifer, Ira ; Muller-Karger, Frank E. ; Solow, Andrew R. ; Silva, M. ; Swayze, Gregg A.When wind speeds are 2–10 m s−1, reflective contrasts in the ocean surface make oil slicks visible to synthetic aperture radar (SAR) under all sky conditions. Neural network analysis of satellite SAR images quantified the magnitude and distribution of surface oil in the Gulf of Mexico from persistent, natural seeps and from the Deepwater Horizon (DWH) discharge. This analysis identified 914 natural oil seep zones across the entire Gulf of Mexico in pre-2010 data. Their ∼0.1 µm slicks covered an aggregated average of 775 km2. Assuming an average volume of 77.5 m3 over an 8–24 h lifespan per oil slick, the floating oil indicates a surface flux of 2.5–9.4 × 104 m3 yr−1. Oil from natural slicks was regionally concentrated: 68%, 25%, 7%, and <1% of the total was observed in the NW, SW, NE, and SE Gulf, respectively. This reflects differences in basin history and hydrocarbon generation. SAR images from 2010 showed that the 87 day DWH discharge produced a surface-oil footprint fundamentally different from background seepage, with an average ocean area of 11,200 km2 (SD 5028) and a volume of 22,600 m3 (SD 5411). Peak magnitudes of oil were detected during equivalent, ∼14 day intervals around 23 May and 18 June, when wind speeds remained <5 m s−1. Over this interval, aggregated volume of floating oil decreased by 21%; area covered increased by 49% (p < 0.1), potentially altering its ecological impact. The most likely causes were increased applications of dispersant and surface burning operations.