Kamennaya
Nina A.
Kamennaya
Nina A.
No Thumbnail Available
2 results
Search Results
Now showing
1 - 2 of 2
-
ArticleDistribution and expression of the cyanate acquisition potential among cyanobacterial populations in oligotrophic marine waters(Association for the Sciences of Limnology and Oceanography, 2013-11) Kamennaya, Nina A. ; Post, Anton F.We assessed the significance of cyanate utilization in marine primary productivity from the distribution of a dedicated transporter (encoded by cynABD) in different ocean environments. Several lines of evidence indicate that the cyanate utilization potential is associated mainly with surface populations of Prochlorococcus. Spatial and temporal dimensions of cynA, cynS, and ntcA expression by picocyanobacteria in the northern Red Sea supported our previous finding that cynA transcripts accumulate under more stringent N-limiting conditions. At the same time, cyanate utilization appeared to be more complex than suggested in our earlier publication, as we showed that picocyanobacteria also express their cyanate utilization potential under conditions where labile organic N compounds, such as urea, accumulate. These include N-sufficient transient conditions that result from nutrient upwelling during early mixing events in autumn as well as during spring bloom conditions that follow deep mixing events. Our finding that cynA occurrence is common in diverse marine environments suggests that cyanate utilization may be of a more fundamental importance to picophytoplankton productivity than previously considered.
-
PreprintCharacterization of cyanate metabolism in marine Synechococcus and Prochlorococcus spp.( 2010-10-14) Kamennaya, Nina A. ; Post, Anton F.Cyanobacteria of the genera Synechococcus and Prochlorococcus are the most abundant photosynthetic organism on Earth occupying a key position at the base of marine food webs. The cynS gene that encodes cyanase was identified among bacterial, fungi and plant sequences in public databases and the gene was particularly prevalent among cyanobacteria, including numerous Prochlorococcus and Synechococcus strains. Phylogenetic analysis of cynS sequences retrieved from the Global Ocean Survey database identified >60% as belonging to unicellular marine cyanobacteria, suggesting an important role for cyanase in their nitrogen metabolism. Here we showed that marine cyanobacteria have a functionally active cyanase, the transcriptional regulation of which varies among strains and reflects the genomic context of cynS. In Prochlorococcus sp. MED4, cynS was presumably transcribed as part of the cynABDS operon, implying cyanase involvement in cyanate utilization. In Synechococcus sp. WH8102, expression was not related to nitrogen stress responses and here cyanase presumably serves in the detoxification of cyanate resulting from intracellular urea and/or carbamoyl phosphate decomposition. Lastly, we report on a cyanase activity encoded by cynH, a novel gene found in marine cyanobacteria only. The presence of dual cyanase genes in genomes of seven marine Synechococcus strains and their respective roles in nitrogen metabolism remain to be clarified.