Sala Osvaldo E.

No Thumbnail Available
Last Name
Sala
First Name
Osvaldo E.
ORCID

Search Results

Now showing 1 - 4 of 4
  • Article
    Aggregate measures of ecosystem services : can we take the pulse of nature?
    (Ecological Society of America, 2005-02) Meyerson, Laura A. ; Baron, Jill ; Melillo, Jerry M. ; Naiman, Robert J. ; O'Malley, Robin I. ; Orians, Gordon ; Palmer, Margaret A. ; Pfaff, Alexander S. P. ; Running, Steven W. ; Sala, Osvaldo E.
    National scale aggregate indicators of ecosystem services are useful for stimulating and supporting a broad public discussion about trends in the provision of these services. There are important considerations involved in producing an aggregate indicator, including whether the scientific and technological capacity exists, how to address varying perceptions of the societal importance of different services, and how to communicate information about these services to both decision makers and the general public. Although the challenges are formidable, they are not insurmountable. Quantification of ecosystem services and dissemination of information to decision makers and the public is critical for the responsible and sustainable management of natural resources.
  • Preprint
    Interactions among resource partitioning, sampling effect, and facilitation on the biodiversity effect : a modeling approach
    ( 2013-08-21) Flombaum, Pedro ; Sala, Osvaldo E. ; Rastetter, Edward B.
    Resource partitioning, facilitation, and sampling effect are the three mechanisms behind the biodiversity effect, which is depicted usually as the effect of plant-species richness on aboveground net primary production. These mechanisms operate simultaneously but their relative importance and interactions are difficult to unravel experimentally. Thus, niche differentiation and facilitation have been lumped together and separated from the sampling effect. Here, we propose three hypotheses about interactions among the three mechanisms and test them using a simulation model. The model simulated water movement through soil and vegetation, and net primary production mimicking the Patagonian steppe. Using the model, we created grass and shrub monocultures and mixtures, controlled root overlap and grass water-use efficiency (WUE) to simulate gradients of biodiversity, resource partitioning and facilitation. The presence of shrubs facilitated grass growth by increasing its WUE and in turn increased the sampling effect whereas root overlap (resource partitioning) had, on average, no effect on sampling effect. Interestingly, resource partitioning and facilitation interacted so the effect of facilitation on sampling effect decreased as resource partitioning increased. Sampling effect was enhanced by the difference between the two functional groups in their efficiency in using resources. Morphological and physiological differences make one group outperform the other, once those differences were established further differences did not enhance the sampling effect. In addition, grass WUE and root overlap positively influence the biodiversity effect but showed no interactions.
  • Article
    Cross-site comparisons of dryland ecosystem response to climate change in the US long-term ecological research network
    (Oxford University Press, 2022-08-16) Hudson, Amy R. ; Peters, Debra P. C. ; Blair, John M. ; Childers, Daniel L. ; Doran, Peter T. ; Geil, Kerrie L. ; Gooseff, Michael N. ; Gross, Katherine ; Haddad, Nick M. ; Pastore, Melissa A. ; Rudgers, Jennifer A. ; Sala, Osvaldo E. ; Seabloom, Eric W. ; Shaver, Gaius R.
    Long-term observations and experiments in diverse drylands reveal how ecosystems and services are responding to climate change. To develop generalities about climate change impacts at dryland sites, we compared broadscale patterns in climate and synthesized primary production responses among the eight terrestrial, nonforested sites of the United States Long-Term Ecological Research (US LTER) Network located in temperate (Southwest and Midwest) and polar (Arctic and Antarctic) regions. All sites experienced warming in recent decades, whereas drought varied regionally with multidecadal phases. Multiple years of wet or dry conditions had larger effects than single years on primary production. Droughts, floods, and wildfires altered resource availability and restructured plant communities, with greater impacts on primary production than warming alone. During severe regional droughts, air pollution from wildfire and dust events peaked. Studies at US LTER drylands over more than 40 years demonstrate reciprocal links and feedbacks among dryland ecosystems, climate-driven disturbance events, and climate change.
  • Preprint
    Reconciling carbon-cycle concepts, terminology, and methods
    ( 2006-01-06) Chapin, F. Stuart ; Woodwell, G. M. ; Randerson, James T. ; Rastetter, Edward B. ; Lovett, G. M. ; Baldocchi, Dennis D. ; Clark, D. A. ; Harmon, Mark E. ; Schimel, David S. ; Valentini, R. ; Wirth, C. ; Aber, J. D. ; Cole, Jonathan J. ; Goulden, Michael L. ; Harden, J. W. ; Heimann, M. ; Howarth, Robert W. ; Matson, P. A. ; McGuire, A. David ; Melillo, Jerry M. ; Mooney, H. A. ; Neff, Jason C. ; Houghton, Richard A. ; Pace, Michael L. ; Ryan, M. G. ; Running, Steven W. ; Sala, Osvaldo E. ; Schlesinger, William H. ; Schulze, E.-D.
    Recent patterns and projections of climatic change have focused increased scientific and public attention on patterns of carbon (C) cycling and its controls, particularly the factors that determine whether an ecosystem is a net source or sink of atmospheric CO2. Net ecosystem production (NEP), a central concept in C-cycling research, has been used to represent two different concepts by C-cycling scientists. We propose that NEP be restricted to just one of its two original definitions—the imbalance between gross primary production (GPP) and ecosystem respiration (ER), and that a new term—net ecosystem carbon balance (NECB)—be applied to the net rate of C accumulation in (or loss from; negative sign) ecosystems. NECB differs from NEP when C fluxes other than C fixation and respiration occur or when inorganic C enters or leaves in dissolved form. These fluxes include leaching loss or lateral transfer of C from the ecosystem; emission of volatile organic C, methane, and carbon monoxide; and soot and CO2 from fire. C fluxes in addition to NEP are particularly important determinants of NECB over long time scales. However, even over short time scales, they are important in ecosystems such as streams, estuaries, wetlands, and cities. Recent technological advances have led to a diversity of approaches to measuring C fluxes at different temporal and spatial scales. These approaches frequently capture different components of NEP or NECB and can therefore be compared across scales only by carefully specifying the fluxes included in the measurements. By explicitly identifying the fluxes that comprise NECB and other components of the C cycle, such as net ecosystem exchange (NEE) and net biome production (NBP), we provide a less ambiguous framework for understanding and communicating recent changes in the global C cycle. Key words: Net ecosystem production, net ecosystem carbon balance, gross primary production, ecosystem respiration, autotrophic respiration, heterotrophic respiration, net ecosystem exchange, net biome production, net primary production.