Weiss Benjamin T.

No Thumbnail Available
Last Name
Weiss
First Name
Benjamin T.
ORCID
0000-0003-3113-3415

Search Results

Now showing 1 - 3 of 3
  • Article
    Multi-scale magnetic mapping of serpentinite carbonation
    (Nature Publishing Group, 2017-11-30) Tominaga, Masako ; Beinlich, Andreas ; Lima, Eduardo A. ; Tivey, Maurice A. ; Hampton, Brian A. ; Weiss, Benjamin ; Harigane, Yumiko
    Peridotite carbonation represents a critical step within the long-term carbon cycle by sequestering volatile CO2 in solid carbonate. This has been proposed as one potential pathway to mitigate the effects of greenhouse gas release. Most of our current understanding of reaction mechanisms is based on hand specimen and laboratory-scale analyses. Linking laboratory-scale observations to field scale processes remains challenging. Here we present the first geophysical characterization of serpentinite carbonation across scales ranging from km to sub-mm by combining aeromagnetic observations, outcrop- and thin section-scale magnetic mapping. At all scales, magnetic anomalies coherently change across reaction fronts separating assemblages indicative of incipient, intermittent, and final reaction progress. The abundance of magnetic minerals correlates with reaction progress, causing amplitude and wavelength variations in associated magnetic anomalies. This correlation represents a foundation for characterizing the extent and degree of in situ ultramafic rock carbonation in space and time.
  • Article
    High‐resolution magnetic‐geochemical mapping of the serpentinized and carbonated Atlin ophiolite, British Columbia: toward establishing magnetometry as a monitoring tool for in situ mineral carbonation
    (American Geophysical Union, 2023-04-10) Tominaga, Masako ; Beinlich, Andreas ; Lima, Eduardo A. ; Pruett, Paiden ; Vento, Noah R. ; Weiss, Benjamin P.
    We address in situ serpentinization and mineral carbonation processes in oceanic lithosphere using integrated field magnetic measurements, rock magnetic analyses, superconducting quantum interference device (SQUID) microscopy, microtextural observations, and energy dispersive spectroscopy phase mapping. A representative suite of ultramafic rock samples were collected, within the Atlin ophiolite, along a 100‐m long transect across a continuous outcrop of mantle harzburgite with several alteration fronts: serpentinite, soapstone (magnesite + talc), and listvenite (magnesite + quartz). Strong correlations between changes in magnetic signal strengths and amount of alteration are shown with distinctive contrasts between serpentinite, transitional soapstone, and listvenite that are linked to the formation and breakdown of magnetite. While previous observations of the Linnajavri ultramafic complex indicated that the breakdown of magnetite occurred during listvenite formation from the precursor soapstone (Tominaga et al., 2017, https://doi.org/10.1038/s41467-017-01610-4), results from our study suggest that magnetite destabilization already occurred during the replacement of serpentinite by soapstone (i.e., at lower fluid CO2 concentrations). This difference is attributed to fracture‐controlled flow of sulfur‐bearing alteration fluid at Atlin, causing reductive magnetite dissolution in thin soapstone zones separating serpentinite from sulfide‐mineralized listvenite. We argue that magnetite growth or breakdown in soapstone provides insight into the mode of fluid flow and the composition, which control the scale and extent of carbonation. This conclusion enables us to use magnetometry as a viable tool for monitoring the reaction progress from serpentinite to carbonate‐bearing assemblages in space and time with a caution that the three‐dimensionality of magnetic sources impacts the scalability of measurements.
  • Article
    Soundscape enrichment increases larval settlement rates for the brooding coral Porites astreoides
    (Royal Society of Chemistry, 2024-03-13) Aoki, Nadege ; Weiss, Benjamin T. ; Jezequel, Youenn ; Zhang, Weifeng Gordon ; Apprill, Amy ; Mooney, T. Aran
    Coral reefs, hubs of global biodiversity, are among the world’s most imperilled habitats. Healthy coral reefs are characterized by distinctive soundscapes; these environments are rich with sounds produced by fishes and marine invertebrates. Emerging evidence suggests these sounds can be used as orientation and settlement cues for larvae of reef animals. On degraded reefs, these cues may be reduced or absent, impeding the success of larval settlement, which is an essential process for the maintenance and replenishment of reef populations. Here, in a field-based study, we evaluated the effects of enriching the soundscape of a degraded coral reef to increase coral settlement rates. Porites astreoides larvae were exposed to reef sounds using a custom solar-powered acoustic playback system. Porites astreoides settled at significantly higher rates at the acoustically enriched sites, averaging 1.7 times (up to maximum of seven times) more settlement compared with control reef sites without acoustic enrichment. Settlement rates decreased with distance from the speaker but remained higher than control levels at least 30 m from the sound source. These results reveal that acoustic enrichment can facilitate coral larval settlement at reasonable distances, offering a promising new method for scientists, managers and restoration practitioners to rebuild coral reefs.