Hennon
Gwenn
Hennon
Gwenn
No Thumbnail Available
Search Results
Now showing
1 - 2 of 2
-
DatasetNCBI accessions of the harmful alga Heterosigma akashiwo (CCMP2393) grown under a range of CO2 concentrations from 200-1000 ppm(Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu, 2019-04-01) Hennon, GwennThis dataset includes metadata associated with NCBI BioProject PRJNA377729 "Impacts of Evolution on the Response of Phytoplankton Populations to Rising CO2" PRJNA377729: https://www.ncbi.nlm.nih.gov/bioproject/PRJNA377729. The alga Heterosigma akashiwo was grown at CO2 levels from about 200 to 1000 ppm and then the DNA and RNA were sequenced. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/747872
-
ArticleBiological production, export efficiency, and phytoplankton communities across 8000 km of the South Atlantic(John Wiley & Sons, 2017-07-11) Howard, Evan M. ; Durkin, Colleen A. ; Hennon, Gwenn ; Ribalet, François ; Stanley, Rachel H. R.In situ oxygen tracers (triple oxygen isotope and oxygen/argon ratios) were used to evaluate meridional trends in surface biological production and export efficiency across ~8000 km of the tropical and subtropical South Atlantic in March–May 2013. We used observations of picophytoplankton, nanophytoplankton, and microphytoplankton to evaluate community structure and diversity and assessed the relationships of these characteristics with production, export efficiency, and particulate organic carbon (POC) fluxes. Rates of productivity were relatively uniform along most of the transect with net community production (NCP) between 0 and 10 mmol O2 m−2 d−1, gross primary production (GPP) between 40 and 100 mmol O2 m−2 d−1, and NCP/GPP, a measure of export efficiency, ranging from 0.1 to 0.2 (0.05–0.1 in carbon units). However, notable exceptions to this basin-scale homogeneity included two locations with highly enhanced NCP and export efficiency compared to surrounding regions. Export of POC and particulate nitrogen, derived from sediment traps, correlated with GPP across the transect, over which the surface community was dominated numerically by picophytoplankton. NCP, however, did not correlate with POC flux; the mean difference between NCP and POC flux was similar to published estimates of dissolved organic carbon export from the surface ocean. The interrelated rates of production presented in this work contribute to the understanding, building on the framework of better-studied ocean basins, of how carbon is biologically transported between the atmosphere and the deep ocean.