Hill Katherine Louise

No Thumbnail Available
Last Name
Hill
First Name
Katherine Louise
ORCID

Search Results

Now showing 1 - 2 of 2
  • Article
    Tropical pacific observing system
    (Frontiers Media, 2019-02-18) Smith, Neville ; Kessler, William S. ; Cravatte, Sophie ; Sprintall, Janet ; Wijffels, Susan E. ; Cronin, Meghan F. ; Sutton, Adrienne J. ; Serra, Yolande L. ; Dewitte, Boris ; Strutton, Peter G. ; Hill, Katherine Louise ; Sen Gupta, Alexander ; Lin, Xiaopei ; Takahashi, Ken ; Chen, Dake ; Brunner, Shelby
    This paper reviews the design of the Tropical Pacific Observing System (TPOS) and its governance and takes a forward look at prospective change. The initial findings of the TPOS 2020 Project embrace new strategic approaches and technologies in a user-driven design and the variable focus of the Framework for Ocean Observing. User requirements arise from climate prediction and research, climate change and the climate record, and coupled modeling and data assimilation more generally. Requirements include focus on the upper ocean and air-sea interactions, sampling of diurnal variations, finer spatial scales and emerging demands related to biogeochemistry and ecosystems. One aim is to sample a diversity of climatic regimes in addition to the equatorial zone. The status and outlook for meeting the requirements of the design are discussed. This is accomplished through integrated and complementary capabilities of networks, including satellites, moorings, profiling floats and autonomous vehicles. Emerging technologies and methods are also discussed. The outlook highlights a few new foci of the design: biogeochemistry and ecosystems, low-latitude western boundary currents and the eastern Pacific. Low latitude western boundary currents are conduits of tropical-subtropical interactions, supplying waters of mid to high latitude origin to the western equatorial Pacific and into the Indonesian Throughflow. They are an essential part of the recharge/discharge of equatorial warm water volume at interannual timescales and play crucial roles in climate variability on regional and global scales. The tropical eastern Pacific, where extreme El Niño events develop, requires tailored approaches owing to the complex of processes at work there involving coastal upwelling, and equatorial cold tongue dynamics, the oxygen minimum zone and the seasonal double Intertropical Convergence Zone. A pilot program building on existing networks is envisaged, complemented by a process study of the East Pacific ITCZ/warm pool/cold tongue/stratus coupled system. The sustainability of TPOS depends on effective and strong collaborative partnerships and governance arrangements. Revisiting regional mechanisms and engaging new partners in the context of a planned and systematic design will ensure a multi-purpose, multi-faceted integrated approach that is sustainable and responsive to changing needs.
  • Article
    Adequacy of the ocean observation system for quantifying regional heat and freshwater storage and change
    (Frontiers Media, 2019-08-29) Palmer, Matthew D. ; Durack, Paul J. ; Chidichimo, Maria Paz ; Church, John A. ; Cravatte, Sophie ; Hill, Katherine Louise ; Johannessen, Johnny A. ; Karstensen, Johannes ; Lee, Tong ; Legler, David ; Mazloff, Matthew R. ; Oka, Eitarou ; Purkey, Sarah G. ; Rabe, Benjamin ; Sallee, Jean-Baptiste ; Sloyan, Bernadette M. ; Speich, Sabrina ; von Schuckmann, Karina ; Willis, Josh ; Wijffels, Susan E.
    Considerable advances in the global ocean observing system over the last two decades offers an opportunity to provide more quantitative information on changes in heat and freshwater storage. Variations in these storage terms can arise through internal variability and also the response of the ocean to anthropogenic climate change. Disentangling these competing influences on the regional patterns of change and elucidating their governing processes remains an outstanding scientific challenge. This challenge is compounded by instrumental and sampling uncertainties. The combined use of ocean observations and model simulations is the most viable method to assess the forced signal from noise and ascertain the primary drivers of variability and change. Moreover, this approach offers the potential for improved seasonal-to-decadal predictions and the possibility to develop powerful multi-variate constraints on climate model future projections. Regional heat storage changes dominate the steric contribution to sea level rise over most of the ocean and are vital to understanding both global and regional heat budgets. Variations in regional freshwater storage are particularly relevant to our understanding of changes in the hydrological cycle and can potentially be used to verify local ocean mass addition from terrestrial and cryospheric systems associated with contemporary sea level rise. This White Paper will examine the ability of the current ocean observing system to quantify changes in regional heat and freshwater storage. In particular we will seek to answer the question: What time and space scales are currently resolved in different regions of the global oceans? In light of some of the key scientific questions, we will discuss the requirements for measurement accuracy, sampling, and coverage as well as the synergies that can be leveraged by more comprehensively analyzing the multi-variable arrays provided by the integrated observing system.