Hristova Hristina G.

No Thumbnail Available
Last Name
Hristova
First Name
Hristina G.
ORCID

Search Results

Now showing 1 - 3 of 3
  • Article
    Onset of time-dependence in a double-gyre circulation : barotropic basin modes versus classical baroclinic modes
    (Sears Foundation for Marine Research, 2010-03-01) Hristova, Hristina G. ; Dijkstra, Henk A. ; Spall, Michael A.
    Using a fully-implicit high-resolution two-layer quasi-geostrophic model combined with pseudo-arclength continuation methods, we perform a bifurcation analysis of double-gyre ocean flows to study their initial oscillatory instabilities. In this model, both wind- and thermally-forced flows can be represented. We demonstrate that on the branch of anti-symmetric steady-state solutions the ratio, Ω, of the flow advective speed to the long internal Rossby wave speed determines the type of oscillatory modes to first become unstable. This is the same nondimensional parameter that controls the shape of the geostrophic contours in the linear limit of the circulation. For large values of Ω, the first Hopf bifurcations correspond to the classical baroclinic modes with inter-monthly time periods arising from shear instability of the flow. For small values of Ω, the first Hopf bifurcations correspond instead to barotropic Rossby modes with shorter, monthly periods arising from mixed barotropic-baroclinic instability of the flow. By considering both a wind-forced and a thermally-forced ocean, we show that this is a robust feature that does not depend on the type of forcing driving the circulation.
  • Article
    Radiating instability of a meridional boundary current
    (American Meteorological Society, 2008-10) Hristova, Hristina G. ; Pedlosky, Joseph ; Spall, Michael A.
    A linear stability analysis of a meridional boundary current on the beta plane is presented. The boundary current is idealized as a constant-speed meridional jet adjacent to a semi-infinite motionless far field. The far-field region can be situated either on the eastern or the western side of the jet, representing a western or an eastern boundary current, respectively. It is found that when unstable, the meridional boundary current generates temporally growing propagating waves that transport energy away from the locally unstable region toward the neutral far field. This is the so-called radiating instability and is found in both barotropic and two-layer baroclinic configurations. A second but important conclusion concerns the differences in the stability properties of eastern and western boundary currents. An eastern boundary current supports a greater number of radiating modes over a wider range of meridional wavenumbers. It generates waves with amplitude envelopes that decay slowly with distance from the current. The radiating waves tend to have an asymmetrical horizontal structure—they are much longer in the zonal direction than in the meridional, a consequence of which is that unstable eastern boundary currents, unlike western boundary currents, have the potential to act as a source of zonal jets for the interior of the ocean.
  • Thesis
    Stability of large-scale oceanic flows and the importance of non-local effects
    (Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 2009-06) Hristova, Hristina G.
    My thesis covers two general circulation problems that involve the stability of largescale oceanic flows and the importance of non-local effects. The first problem examines the stability of meridional boundary currents, which are found on both sides of most ocean basins because of the presence of continents. A linear stability analysis of a meridional boundary current on the beta-plane is performed using a quasi-geostrophic model in order to determine the existence of radiating instabilities, a type of instability that propagates energy away from its origin region by exciting Rossby waves and can thus act as a source of eddy energy for the ocean interior. It is found that radiating instabilities are commonly found in both eastern and western boundary currents. However, there are some significant differences that make eastern boundary currents more interesting from a radiation point of view. They possess a larger number of radiating modes, characterized by horizontal wavenumbers which would make them appear like zonal jets as they propagate into the ocean interior. The second problem examines the circulation in a nonlinear thermally-forced two-layer quasi-geostrophic ocean. The only driving force for the circulation in the model is a cross-isopycnal flux parameterized as interface relaxation. This forcing is similar to the radiative damping used commonly in atmospheric models, except that it is applied to the ocean circulation in a closed basin and is meant to represent the large-scale thermal forcing acting on the oceans. It is found that in the strongly nonlinear regime a substantial, not directly thermally-driven barotropic circulation is generated. Its variability in the limit of weak bottom drag is dominated by high-frequency barotropic basin modes. It is demonstrated that the excitation of basin normal modes has significant consequences for the mean state of the system and its variability, conclusions that are likely to apply for any other system whose variability is dominated by basin modes, no matter the forcing. A linear stability analysis performed on a wind- and a thermally-forced double-gyre circulation reveals that under certain conditions the basin modes can arise from local instabilities of the flow.