Ruiz Simon

No Thumbnail Available
Last Name
Ruiz
First Name
Simon
ORCID
0000-0002-9395-9370

Search Results

Now showing 1 - 13 of 13
  • Article
    The AlborEX dataset: Sampling of sub-mesoscale features in the Alboran Aea
    (Copernicus Publications, 2019-01-25) Troupin, Charles ; Pascual, Ananda ; Ruiz, Simon ; Olita, Antonio ; Casas, Benjamin ; Margirier, Félix ; Poulain, Pierre Marie ; Notarstefano, Giulio ; Torner, Marc ; Fernández, Juan Gabriel ; Rújula, Miquel Àngel ; Muñoz, Cristian ; Alou, Eva ; Ruiz, Inmaculada ; Tovar-Sánchez, Antonio ; Allen, John T. ; Mahadevan, Amala ; Tintoré, Joaquín
    he AlborEX (Alboran Sea Experiment) consisted of a multi-platform, multi-disciplinary experiment carried out in the Alboran Sea (western Mediterranean Sea) between 25 and 31 May 2014. The observational component of AlborEx aimed to sample the physical and biogeochemical properties of oceanographic features present along an intense frontal zone, with a particular interest in the vertical motions in its vicinity. To this end, the mission included 1 research vessel (66 profiles), 2 underwater gliders (adding up 552 profiles), 3 profiling floats, and 25 surface drifters. Near real-time ADCP velocities were collected nightly and during the CTD sections. All of the profiling floats acquired temperature and conductivity profiles, while the Provor-bio float also measured oxygen and chlorophyll a concentrations, coloured dissolved organic matter, backscattering at 700nm, downwelling irradiance at 380, 410, and 490nm, as well as photo-synthetically active radiation (PAR). In the context of mesoscale and sub-mesoscale interactions, the AlborEX dataset constitutes a particularly valuable source of information to infer mechanisms, evaluate vertical transport, and establish relationships between the thermal and haline structures and the biogeochemical variable evolution, in a region characterised by strong horizontal gradients provoked by the confluence of Atlantic and Mediterranean waters, thanks to its multi-platform, multi-disciplinary nature. The dataset presented in this paper can be used for the validation of high-resolution numerical models or for data assimilation experiment, thanks to the various scales of processes sampled during the cruise. All the data files that make up the dataset are available in the SOCIB data catalog at https://doi.org/10.25704/z5y2-qpye (Pascual et al., 2018). The nutrient concentrations are available at https://repository.socib.es:8643/repository/entry/show?entryid=07ebf505-bd27-4ae5-aa43-c4d1c85dd500 (last access: 24 December 2018).
  • Article
    Effects of oceanic mesoscale and submesoscale frontal processes on the vertical transport of phytoplankton
    (American Geophysical Union, 2019-07-23) Ruiz, Simon ; Claret, Mariona ; Pascual, Ananda ; Olita, Antonio ; Troupin, Charles ; Capet, Arthur ; Tovar-Sánchez, Antonio ; Allen, John T. ; Poulain, Pierre Marie ; Tintoré, Joaquín ; Mahadevan, Amala
    Oceanic fronts are dynamically active regions of the global ocean that support upwelling and downwelling with significant implications for phytoplankton production and export. However (on time scales urn:x-wiley:jgrc:media:jgrc23568:jgrc23568-math-0001 the inertial time scale), the vertical velocity is 103–104 times weaker than the horizontal velocity and is difficult to observe directly. Using intensive field observations in conjunction with a process study ocean model, we examine vertical motion and its effect on phytoplankton fluxes at multiple spatial horizontal scales in an oligotrophic region in the Western Mediterranean Sea. The mesoscale ageostrophic vertical velocity (∼10 m/day) inferred from our observations shapes the large‐scale phytoplankton distribution but does not explain the narrow (1–10 km wide) features of high chlorophyll content extending 40–60 m downward from the deep chlorophyll maximum. Using modeling, we show that downwelling submesoscale features concentrate 80% of the downward vertical flux of phytoplankton within just 15% of the horizontal area. These submesoscale spatial structures serve as conduits between the surface mixed layer and pycnocline and can contribute to exporting carbon from the sunlit surface layers to the ocean interior.
  • Article
    Diagnosing frontal dynamics from observations using a variational approach
    (American Geophysical Union, 2022-09-30) Cutolo, Eugenio ; Pascual, Ananda ; Ruiz, Simón ; Johnston, T. M. Shaun ; Freilich, Mara ; Mahadevan, Amala ; Shcherbina, Andrey ; Poulain, Pierre‐Marie ; Ozgokmen, Tamay ; Centurioni, Luca R. ; Rudnick, Daniel L. ; D’Asaro, Eric
    Intensive hydrographic and horizontal velocity measurements collected in the Alboran Sea enabled us to diagnose the three‐dimensional dynamics of a frontal system. The sampled domain was characterized by a 40 km diameter anticyclonic eddy, with an intense front on its eastern side, separating the Atlantic and Mediterranean waters. Here, we implemented a multi‐variate variational analysis (VA) to reconstruct the hydrographic fields, combining the 1‐km horizontal resolution of the Underway Conductivity‐Temperature‐Depth (CTD) system with information on the flow shape from the Acoustic Doppler Current Profiler velocities. One advantage of the VA is given by the physical constraint, which preserves fine‐scale gradients better than the classical optimal interpolation (OI). A comparison between real drifter trajectories and virtual particles advected in the mapping quantified the improvements in the VA over the OI, with a 15% larger skill score. Quasi‐geostrophic (QG) and semi‐geostrophic (SG) omega equations enabled us to estimate the vertical velocity (w) which reached 40 m/day on the dense side of the front. How nutrients and other passive tracers leave the mixed‐layer and subduct is estimated with 3D advection from the VA, which agreed with biological sampling from traditional CTD casts at two eddy locations. Downwelling warm filaments are further evidence of subduction, in line with the w from SG, but not with QG. SG better accounted for the along‐isopycnal component of w in agreement with another analysis made on isopycnal coordinates. The multi‐platform approach of this work and the use of variational methods improved the characterization and understanding of (sub)‐mesoscale frontal dynamics.
  • Article
    A multiplatform experiment to unravel meso- and submesoscale processes in an intense front (AlborEx).
    (Frontiers Media, 2017-02-21) Pascual, Ananda ; Ruiz, Simon ; Olita, Antonio ; Troupin, Charles ; Claret, Mariona ; Casas, Benjamin ; Mourre, Baptiste ; Poulain, Pierre Marie ; Tovar-Sanchez, Antonio ; Capet, Arthur ; Mason, Evan ; Allen, John T. ; Mahadevan, Amala ; Tintoré, Joaquín
    The challenges associated with meso- and submesoscale variability (between 1 and 100 km) require high-resolution observations and integrated approaches. Here we describe a major oceanographic experiment designed to capture the intense but transient vertical motions in an area characterized by strong fronts. Finescale processes were studied in the eastern Alboran Sea (Western Mediterranean) about 400 km east of the Strait of Gibraltar, a relatively sparsely sampled area. In-situ systems were coordinated with satellite data and numerical simulations to provide a full description of the physical and biogeochemical variability. Hydrographic data confirmed the presence of an intense salinity front formed by the confluence of Atlantic Waters, entering from Gibraltar, with the local Mediterranean waters. The drifters coherently followed the northeastern limb of an anticyclonic gyre. Near real time data from acoustic current meter data profiler showed consistent patterns with currents of up to 1 m/s in the southern part of the sampled domain. High-resolution glider data revealed submesoscale structures with tongues of chlorophyll-a and oxygen associated with the frontal zone. Numerical results show large vertical excursions of tracers that could explain the subducted tongues and filaments captured by ocean gliders. A unique aspect of AlborEx is the combination of high-resolution synoptic measurements of vessel-based measurements, autonomous sampling, remote sensing and modeling, enabling the evaluation of the underlying mechanisms responsible for the observed distributions and biogeochemical patchiness. The main findings point to the importance of fine-scale processes enhancing the vertical exchanges between the upper ocean and the ocean interior.
  • Article
    Coherent pathways for vertical transport from the Surface Ocean to Interior
    (American Meteorological Society, 2020-11-01) Mahadevan, Amala ; Pascual, Ananda ; Rudnick, Daniel L. ; Ruiz, Simon ; Tintoré, Joaquín ; D'Asaro, Eric A.
    A long-standing challenge in oceanography is the observing, modeling, and prediction of vertical transport, which links the sunlit and atmospherically mediated surface boundary layer with the deeper ocean. Vertical motions play a critical role in the exchange of heat, freshwater, and biogeochemical tracers between the surface and the ocean interior. The most intense vertical velocities occur at horizontal scales less than 10 km, making them difficult to observe in the ocean and to resolve in models. Understanding how finescale turbulent motions and 0.1–10 km submesoscale processes contribute to the large-scale budgets of nutrients, oxygen, carbon, and heat and affect sea surface temperature, the air–sea exchange of gases, and the carbon cycle is one of the key challenges in oceanography.
  • Preprint
    Frontal dynamics boost primary production in the summer stratified Mediterranean sea
    ( 2017-05) Olita, Antonio ; Capet, Arthur ; Claret, Mariona ; Mahadevan, Amala ; Poulain, Pierre Marie ; Ribotti, Alberto ; Ruiz, Simon ; Tintoré, Joaquín ; Tovar-Sánchez, Antonio ; Pascual, Ananda
    Bio-physical glider measurements from a unique process-oriented experiment in the Eastern Alboran Sea (AlborEx) allowed us to observe the distribution of the deep chlorophyll maximum (DCM) across an intense density front, with a resolution (∼ 400 m) suitable for investigating sub-mesoscale dynamics. This front, at the interface between Atlantic and Mediterranean waters, had a sharp density gradient (Δρ ∼ 1 kg/m3 in ∼ 10 km) and showed imprints of (sub-)mesoscale phenomena on tracer distributions. Specifically, the chlorophyll-a concentration within the DCM showed a disrupted pattern along isopycnal surfaces, with patches bearing a relationship to the stratification (buoyancy frequency) at depths between 30 and 60 m. In order to estimate the primary production (PP) rate within the chlorophyll patches observed at the sub-surface, we applied the Morel and Andrè (J Geophys Res 96:685–698 1991) bio-optical model using the photosynthetic active radiation (PAR) from Argo profiles collected simultaneously with glider data. The highest production was located concurrently with domed isopycnals on the fresh side of the front, suggestive that (sub-)mesoscale upwelling is carrying phytoplankton patches from less to more illuminated levels, with a contemporaneous delivering of nutrients. Integrated estimations of PP (1.3 g C m−2d−1) along the glider path are two to four times larger than the estimations obtained from satellite-based algorithms, i.e., derived from the 8-day composite fields extracted over the glider trip path. Despite the differences in spatial and temporal sampling between instruments, the differences in PP estimations are mainly due to the inability of the satellite to measure DCM patches responsible for the high production. The deepest (depth > 60 m) chlorophyll patches are almost unproductive and probably transported passively (subducted) from upper productive layers. Finally, the relationship between primary production and oxygen is also investigated. The logarithm of the primary production in the DCM interior (chlorophyll (Chl) > 0.5 mg/m3) shows a linear negative relationship with the apparent oxygen utilization, confirming that high chlorophyll patches are productive. The slope of this relationship is different for Atlantic, mixed interface waters and Mediterranean waters, suggesting the presence of differences in planktonic communities (whether physiological, population, or community level should be object of further investigation) on the different sides of the front. In addition, the ratio of optical backscatter to Chl is high within the intermediate (mixed) waters, which is suggestive of large phytoplankton cells, and lower within the core of the Atlantic and Mediterranean waters. These observations highlight the relevance of fronts in triggering primary production at DCM level and shaping the characteristic patchiness of the pelagic domain. This gains further relevance considering the inadequacy of optical satellite sensors to observe DCM concentrations at such fine scales.
  • Article
    Thermal lag correction on Slocum CTD glider data
    (American Meteorological Society, 2011-09) Garau, Bartolome ; Ruiz, Simon ; Zhang, Weifeng G. ; Pascual, Ananda ; Heslop, Emma ; Kerfoot, John ; Tintore, Joaquin
    In this work a new methodology is proposed to correct the thermal lag error in data from unpumped CTD sensors installed on Slocum gliders. The advantage of the new approach is twofold: first, it takes into account the variable speed of the glider; and second, it can be applied to CTD profiles from an autonomous platform either with or without a reference cast. The proposed methodology finds values for four correction parameters that minimize the area between two temperature–salinity curves given by two CTD profiles. A field experiment with a Slocum glider and a standard CTD was conducted to test the method. Thermal lag–induced salinity error of about 0.3 psu was found and successfully corrected.
  • Technical Report
    CALYPSO 2019 Cruise Report: field campaign in the Mediterranean
    (Woods Hole Oceanographic Institution, 2020-01) Mahadevan, Amala ; D'Asaro, Eric A. ; Allen, John T. ; Almaraz García, Pablo ; Alou-Font, Eva ; Aravind, Harilal Meenambika ; Balaguer, Pau ; Caballero, Isabel ; Calafat, Noemi ; Carbornero, Andrea ; Casas, Benjamin ; Castilla, Carlos ; Centurioni, Luca R. ; Conley, Margaret ; Cristofano, Gino ; Cutolo, Eugenio ; Dever, Mathieu ; Enrique Navarro, Angélica ; Falcieri, Francesco ; Freilich, Mara ; Goodwin, Evan ; Graham, Raymond ; Guigand, Cedric ; Hodges, Benjamin A. ; Huntley, Helga ; Johnston, T. M. Shaun ; Lankhorst, Matthias ; Lermusiaux, Pierre F. J. ; Lizaran, Irene ; Mirabito, Chris ; Miralles, A. ; Mourre, Baptiste ; Navarro, Gabriel ; Ohmart, Michael ; Ouala, Said ; Ozgokmen, Tamay M. ; Pascual, Ananda ; Pou, Joan Mateu Horrach ; Poulain, Pierre Marie ; Ren, Alice ; Tarry, Daniel R. ; Rudnick, Daniel L. ; Rubio, M. ; Ruiz, Simon ; Rypina, Irina I. ; Tintore, Joaquin ; Send, Uwe ; Shcherbina, Andrey Y. ; Torner, Marc ; Salvador-Vieira, Guilherme ; Wirth, Nikolaus ; Zarokanellos, Nikolaos
    This cruise aimed to identify transport pathways from the surface into the interior ocean during the late winter in the Alborán sea between the Strait of Gibraltar (5°40’W) and the prime meridian. Theory and previous observations indicated that these pathways likely originated at strong fronts, such as the one that separates salty Mediterranean water and the fresher water in owing from the Atlantic. Our goal was to map such pathways and quantify their transport. Since the outcropping isopycnals at the front extend to the deepest depths during the late winter, we planned the cruise at the end of the Spring, prior to the onset of thermal stratification of the surface mixed layer.
  • Article
    Frontal convergence and vertical velocity measured by drifters in the Alboran Sea
    (American Geophysical Union, 2021-03-24) Tarry, Daniel R. ; Essink, Sebastian ; Pascual, Ananda ; Ruiz, Simon ; Poulain, Pierre Marie ; Ozgokmen, Tamay M. ; Centurioni, Luca R. ; Farrar, J. Thomas ; Shcherbina, Andrey Y. ; Mahadevan, Amala ; D'Asaro, Eric A.
    Horizontal and vertical motions associated with mesoscale (10–100 km) and submesoscale (1–10 km) features, such as fronts, meanders, eddies, and filaments, play a critical role in redistributing physical and biogeochemical properties in the ocean. This study makes use of a multiplatform data set of 82 drifters, a Lagrangian float, and profile timeseries of temperature and salinity, obtained in a ∼1-m/s semipermanent frontal jet in the Alboran Sea as part of CALYPSO (Coherent Lagrangian Pathways from the Surface Ocean to Interior). Drifters drogued at ∼1-m and 15-m depth capture the mesoscale and submesoscale circulation aligning along the perimeter of fronts due to horizontal shear. Clusters of drifters are used to estimate the kinematic properties, such as vorticity and divergence, of the flow by fitting a bivariate plane to the horizontal drifter velocities. Clusters with submesoscale length scales indicate normalized vorticity ζ/f > 1 with Coriolis frequency f and normalized divergence of (1) occurring in patches along the front, with error variance around 10%. By computing divergence from drifter clusters at two different depths, we estimate minimum vertical velocity of (−100 m day−1) in the upper 10 m of the water column. These results are at least twice as large as previous estimates of vertical velocity in the region. Location, magnitude, and timing of the convergence are consistent with behavior of a Lagrangian float subducting in the center of a drifter cluster. These results improve our understanding of frontal subduction and quantify convergence and vertical velocity using Lagrangian tools.
  • Article
    Drifter observations reveal intense vertical velocity in a surface ocean front
    (American Geophysical Union, 2022-09-03) Tarry, Daniel R. ; Ruiz, Simon ; Johnston, T. M. Shaun ; Poulain, Pierre Marie ; Ozgokmen, Tamay M. ; Centurioni, Luca R. ; Berta, Maristella ; Esposito, Giovanni ; Farrar, J. Thomas ; Mahadevan, Amala ; Pascual, Ananda
    Measuring vertical motions represent a challenge as they are typically 3–4 orders of magnitude smaller than the horizontal velocities. Here, we show that surface vertical velocities are intensified at submesoscales and are dominated by high frequency variability. We use drifter observations to calculate divergence and vertical velocities in the upper 15 m of the water column at two different horizontal scales. The drifters, deployed at the edge of a mesoscale eddy in the Alboran Sea, show an area of strong convergence (urn:x-wiley:00948276:media:grl64766:grl64766-math-0001(f)) associated with vertical velocities of −100 m day−1. This study shows that a multilayered-drifter array can be an effective tool for estimating vertical velocity near the ocean surface.
  • Article
    Inertial oscillations and frontal processes in an Alboran Sea Jet: effects on divergence and vertical transport
    (American Geophysical Union, 2023-02-15) Esposito, Giovanni ; Donnet, Sebastien ; Berta, Maristella ; Shcherbina, Andrey Y. ; Freilich, Mara ; Centurioni, Luca ; D’Asaro, Eric A. ; Farrar, J. Thomas ; Johnston, T. M. Shaun ; Mahadevan, Amala ; Özgökmen, Tamay ; Pascual, Ananda ; Poulain, Pierre‐Marie ; Ruiz, Simón ; Tarry, Daniel R. ; Griffa, Annalisa
    Vertical transport pathways in the ocean are still only partially understood despite their importance for biogeochemical, pollutant, and climate applications. Detailed measurements of a submesoscale frontal jet in the Alboran Sea (Mediterranean Sea) during a period of highly variable winds were made using cross‐frontal velocity, density sections and dense arrays of surface drifters deployed across the front. The measurements show divergences as large as ±f implying vertical velocities of order 100 m/day for a ≈ 20 m thick surface layer. Over the 20 hr of measurement, the divergences made nearly one complete oscillation, suggesting an important role for near‐inertial oscillations. A wind‐forced slab model modified by the observed background frontal structure and with initial conditions matched to the data produces divergence oscillations and pattern compatible with that observed. Significant differences, though, are found in terms of mean divergence, with the data showing a prevalence of negative, convergent values. Despite the limitations in data sampling and model uncertainties, this suggests the contribution of other dynamical processes. Turbulent boundary layer processes are discussed, as a contributor to enhance the observed convergent phase. Water mass properties suggest that symmetric instabilities might also be present but do not play a crucial role, while downward stirring along displaced isopycnals is observed.Plain Language SummaryVertical transport pathways are essential for the exchange of properties between the surface and the deeper layers of the ocean. Despite the recognized role of vertical dynamics in biogeochemical and climate applications, it is still only partially understood. This is principally due to observational challenges. Vertical transport pathways are generally very localized processes and are associated with vertical velocities comparable to instrumental uncertainty. In this work, we focus on vertical processes occurring along a front at the edge of an eddy in the Mediterranean Sea. The paper combines the analysis of multiple observations with the use of an idealized numerical model to isolate and study surface divergence patterns. These analyses allow the investigation of the role of the wind forcing and of small‐scale ocean processes in vertical transport.Key PointsDivergence and vertical velocity oscillations are observed at a submesoscale front on the edge of an anticyclone in the Alboran SeaNear‐inertial oscillations play a major role in the observed divergence oscillatory pattern as suggested by a modified slab model of a wind‐forced frontal jetTurbulent boundary layer processes and symmetric instabilities can contribute to differences between modeled and observed vertical dynamics
  • Article
    OceanGliders: A component of the integrated GOOS
    (Frontiers Media, 2019-10-02) Testor, Pierre ; de Young, Brad ; Rudnick, Daniel L. ; Glenn, Scott ; Hayes, Daniel J. ; Lee, Craig M. ; Pattiaratchi, Charitha ; Hill, Katherine Louise ; Heslop, Emma ; Turpin, Victor ; Alenius, Pekka ; Barrera, Carlos ; Barth, John A. ; Beaird, Nicholas ; Bécu, Guislain ; Bosse, Anthony ; Bourrin, François ; Brearley, J. Alexander ; Chao, Yi ; Chen, Sue ; Chiggiato, Jacopo ; Coppola, Laurent ; Crout, Richard ; Cummings, James A. ; Curry, Beth ; Curry, Ruth G. ; Davis, Richard F. ; Desai, Kruti ; DiMarco, Steven F. ; Edwards, Catherine ; Fielding, Sophie ; Fer, Ilker ; Frajka-Williams, Eleanor ; Gildor, Hezi ; Goni, Gustavo J. ; Gutierrez, Dimitri ; Haugan, Peter M. ; Hebert, David ; Heiderich, Joleen ; Henson, Stephanie A. ; Heywood, Karen J. ; Hogan, Patrick ; Houpert, Loïc ; Huh, Sik ; Inall, Mark E. ; Ishii, Masao ; Ito, Shin-ichi ; Itoh, Sachihiko ; Jan, Sen ; Kaiser, Jan ; Karstensen, Johannes ; Kirkpatrick, Barbara ; Klymak, Jody M. ; Kohut, Josh ; Krahmann, Gerd ; Krug, Marjolaine ; McClatchie, Sam ; Marin, Frédéric ; Mauri, Elena ; Mehra, Avichal ; Meredith, Michael P. ; Meunier, Thomas ; Miles, Travis ; Morell, Julio M. ; Mortier, Laurent ; Nicholson, Sarah ; O'Callaghan, Joanne ; O'Conchubhair, Diarmuid ; Oke, Peter ; Pallás-Sanz, Enric ; Palmer, Matthew D. ; Park, Jong Jin ; Perivoliotis, Leonidas ; Poulain, Pierre Marie ; Perry, Ruth ; Queste, Bastien ; Rainville, Luc ; Rehm, Eric ; Roughan, Moninya ; Rome, Nicholas ; Ross, Tetjana ; Ruiz, Simon ; Saba, Grace ; Schaeffer, Amandine ; Schönau, Martha ; Schroeder, Katrin ; Shimizu, Yugo ; Sloyan, Bernadette M. ; Smeed, David A. ; Snowden, Derrick ; Song, Yumi ; Swart, Sebastiaan ; Tenreiro, Miguel ; Thompson, Andrew ; Tintore, Joaquin ; Todd, Robert E. ; Toro, Cesar ; Venables, Hugh J. ; Wagawa, Taku ; Waterman, Stephanie N. ; Watlington, Roy A. ; Wilson, Doug
    The OceanGliders program started in 2016 to support active coordination and enhancement of global glider activity. OceanGliders contributes to the international efforts of the Global Ocean Observation System (GOOS) for Climate, Ocean Health, and Operational Services. It brings together marine scientists and engineers operating gliders around the world: (1) to observe the long-term physical, biogeochemical, and biological ocean processes and phenomena that are relevant for societal applications; and, (2) to contribute to the GOOS through real-time and delayed mode data dissemination. The OceanGliders program is distributed across national and regional observing systems and significantly contributes to integrated, multi-scale and multi-platform sampling strategies. OceanGliders shares best practices, requirements, and scientific knowledge needed for glider operations, data collection and analysis. It also monitors global glider activity and supports the dissemination of glider data through regional and global databases, in real-time and delayed modes, facilitating data access to the wider community. OceanGliders currently supports national, regional and global initiatives to maintain and expand the capabilities and application of gliders to meet key global challenges such as improved measurement of ocean boundary currents, water transformation and storm forecast.
  • Article
    3D intrusions transport active surface microbial assemblages to the dark ocean
    (National Academy of Sciences, 2024-05-02) Freilich, Mara A. ; Poirier, Camille ; Dever, Mathieu ; Alou-Font, Eva ; Allen, John ; Cabornero, Andrea ; Sudek, Lisa ; Choi, Chang Jae ; Ruiz, Simon ; Pascual, Ananda ; Farrar, J. Thomas ; Johnston, T. M. Shaun ; D'Asaro, Eric A. ; Worden, Alexandra Z. ; Mahadevan, Amala
    Subtropical oceans contribute significantly to global primary production, but the fate of the picophytoplankton that dominate in these low-nutrient regions is poorly understood. Working in the subtropical Mediterranean, we demonstrate that subduction of water at ocean fronts generates 3D intrusions with uncharacteristically high carbon, chlorophyll, and oxygen that extend below the sunlit photic zone into the dark ocean. These contain fresh picophytoplankton assemblages that resemble the photic-zone regions where the water originated. Intrusions propagate depth-dependent seasonal variations in microbial assemblages into the ocean interior. Strikingly, the intrusions included dominant biomass contributions from nonphotosynthetic bacteria and enrichment of enigmatic heterotrophic bacterial lineages. Thus, the intrusions not only deliver material that differs in composition and nutritional character from sinking detrital particles, but also drive shifts in bacterial community composition, organic matter processing, and interactions between surface and deep communities. Modeling efforts paired with global observations demonstrate that subduction can flux similar magnitudes of particulate organic carbon as sinking export, but is not accounted for in current export estimates and carbon cycle models. Intrusions formed by subduction are a particularly important mechanism for enhancing connectivity between surface and upper mesopelagic ecosystems in stratified subtropical ocean environments that are expanding due to the warming climate.