Rocha Adrian V.

No Thumbnail Available
Last Name
Rocha
First Name
Adrian V.
ORCID

Search Results

Now showing 1 - 9 of 9
  • Article
    Contrasting soil thermal responses to fire in Alaskan tundra and boreal forest
    (John Wiley & Sons, 2015-02-24) Jiang, Yueyang ; Rocha, Adrian V. ; O’Donnell, Jonathan A. ; Drysdale, Jessica A. ; Rastetter, Edward B. ; Shaver, Gaius R. ; Zhuang, Qianlai
    Recent fire activity throughout Alaska has increased the need to understand postfire impacts on soils and permafrost vulnerability. Our study utilized data and modeling from a permafrost and ecosystem gradient to develop a mechanistic understanding of the short- and long-term impacts of tundra and boreal forest fires on soil thermal dynamics. Fires influenced a variety of factors that altered the surface energy budget, soil moisture, and the organic-layer thickness with the overall effect of increasing soil temperatures and thaw depth. The postfire thickness of the soil organic layer and its impact on soil thermal conductivity was the most important factor determining postfire soil temperatures and thaw depth. Boreal and tundra ecosystems underlain by permafrost experienced smaller postfire soil temperature increases than the nonpermafrost boreal forest from the direct and indirect effects of permafrost on drainage, soil moisture, and vegetation flammability. Permafrost decreased the loss of the insulating soil organic layer, decreased soil drying, increased surface water pooling, and created a significant heat sink to buffer postfire soil temperature and thaw depth changes. Ecosystem factors also played a role in determining postfire thaw depth with boreal forests taking several decades longer to recover their soil thermal properties than tundra. These factors resulted in tundra being less sensitive to postfire soil thermal changes than the nonpermafrost boreal forest. These results suggest that permafrost and soil organic carbon will be more vulnerable to fire as climate warms.
  • Preprint
    Vegetation shifts observed in arctic tundra 1.5 decades after fire
    ( 2012-01-27) Barrett, Kirsten ; Rocha, Adrian V. ; van de Weg, Martine J. ; Shaver, Gaius R.
    With anticipated climate change, tundra fires are expected to occur more frequently in the future, but data on the longer term effects of fire on tundra vegetation composition are scarce. This study therefore addresses changes in vegetation structure that have persisted for 17 years after a tundra fire on the North Slope of Alaska. Fire-related shifts in vegetation composition were assessed from remote sensing imagery and ground observations of the burn scar and an adjacent control site. Early-season remotely sensed imagery from the burn scar exhibits a low vegetation index compared to the control site, while the late-season signal is slightly higher. The range and maximum vegetation index is greater in the burn scar, although the mean annual values do not differ among the sites. Ground observations revealed a greater abundance of graminoid species and an absence of Betula nana in the post-fire tundra sites, which is a likely explanation for the spectral differences observed in the remotely sensed imagery. Additional differences in vegetation composition in the burn scar include less moss cover and a greater cover of herbaceous species. The partial replacement of tundra by graminoid-dominated ecosystems has been predicted by the ALFRESCO model of disturbance, climate, and vegetation succession.
  • Article
    Burn severity influences postfire CO2 exchange in Arctic tundra
    (Ecological Society of America, 2011-03) Rocha, Adrian V. ; Shaver, Gaius R.
    Burned landscapes present several challenges to quantifying landscape carbon balance. Fire scars are composed of a mosaic of patches that differ in burn severity, which may influence postfire carbon budgets through damage to vegetation and carbon stocks. We deployed three eddy covariance towers along a burn severity gradient (i.e., severely burned, moderately burned, and unburned tundra) to monitor postfire net ecosystem exchange of CO2 (NEE) within the large 2007 Anaktuvuk River fire scar in Alaska, USA, during the summer of 2008. Remote sensing data from the MODerate resolution Imaging Spectroradiometer (MODIS) was used to assess the spatial representativeness of the tower sites and parameterize a NEE model that was used to scale tower measurements to the landscape. The tower sites had similar vegetation and reflectance properties prior to the Anaktuvuk River fire and represented the range of surface conditions observed within the fire scar during the 2008 summer. Burn severity influenced a variety of surface properties, including residual organic matter, plant mortality, and vegetation recovery, which in turn determined postfire NEE. Carbon sequestration decreased with increased burn severity and was largely controlled by decreases in canopy photosynthesis. The MODIS two-band enhanced vegetation index (EVI2) monitored the seasonal course of surface greenness and explained 86% of the variability in NEE across the burn severity gradient. We demonstrate that understanding the relationship between burn severity, surface reflectance, and NEE is critical for estimating the overall postfire carbon balance of the Anaktuvuk River fire scar.
  • Article
    Plant uptake offsets silica release from a large arctic tundra wildfire
    (American Geophysical Union, 2019-07-24) Carey, Joanna C. ; Abbott, Benjamin W. ; Rocha, Adrian V.
    Rapid climate change at high latitudes is projected to increase wildfire extent in tundra ecosystems by up to fivefold by the end of the century. Tundra wildfire could alter terrestrial silica (SiO2) cycling by restructuring surface vegetation and by deepening the seasonally thawed active layer. These changes could influence the availability of silica in terrestrial permafrost ecosystems and alter lateral exports to downstream marine waters, where silica is often a limiting nutrient. In this context, we investigated the effects of the largest Arctic tundra fire in recent times on plant and peat amorphous silica content and dissolved silica concentration in streams. Ten years after the fire, vegetation in burned areas had 73% more silica in aboveground biomass compared to adjacent, unburned areas. This increase in plant silica was attributable to significantly higher plant silica concentration in bryophytes and increased prevalence of silica‐rich gramminoids in burned areas. Tundra fire redistributed peat silica, with burned areas containing significantly higher amorphous silica concentrations in the O‐layer, but 29% less silica in peat overall due to shallower peat depth post burn. Despite these dramatic differences in terrestrial silica dynamics, dissolved silica concentration in tributaries draining burned catchments did not differ from unburned catchments, potentially due to the increased uptake by terrestrial vegetation. Together, these results suggest that tundra wildfire enhances terrestrial availability of silica via permafrost degradation and associated weathering, but that changes in lateral silica export may depend on vegetation uptake during the first decade of postwildfire succession.
  • Article
    Shallow soils are warmer under trees and tall shrubs across arctic and boreal ecosystems
    (IOP Publishing, 2020-12-18) Kropp, Heather ; Loranty, Michael M. ; Natali, Susan M. ; Kholodov, Alexander L. ; Rocha, Adrian V. ; Myers-Smith, Isla H. ; Abbott, Benjamin W. ; Abermann, Jakob ; Blanc-Betes, Elena ; Blok, Daan ; Blume-Werry, Gesche ; Boike, Julia ; Breen, Amy L. ; Cahoon, Sean M. P. ; Christiansen, Casper T. ; Douglas, Thomas A. ; Epstein, Howard E. ; Frost, Gerald V. ; Goeckede, Mathias ; Høye, Toke T. ; Mamet, Steven D. ; O’Donnell, Jonathan A. ; Olefeldt, David ; Phoenix, Gareth K. ; Salmon, Verity G. ; Sannel, A. Britta K. ; Smith, Sharon L. ; Sonnentag, Oliver ; Smith Vaughn, Lydia ; Williams, Mathew ; Elberling, Bo ; Gough, Laura ; Hjort, Jan ; Lafleur, Peter M. ; Euskirchen, Eugenie ; Heijmans, Monique M. P. D. ; Humphreys, Elyn ; Iwata, Hiroki ; Jones, Benjamin M. ; Jorgenson, M. Torre ; Grünberg, Inge ; Kim, Yongwon ; Laundre, James A. ; Mauritz, Marguerite ; Michelsen, Anders ; Schaepman-Strub, Gabriela ; Tape, Ken D. ; Ueyama, Masahito ; Lee, Bang-Yong ; Langley, Kirsty ; Lund, Magnus
    Soils are warming as air temperatures rise across the Arctic and Boreal region concurrent with the expansion of tall-statured shrubs and trees in the tundra. Changes in vegetation structure and function are expected to alter soil thermal regimes, thereby modifying climate feedbacks related to permafrost thaw and carbon cycling. However, current understanding of vegetation impacts on soil temperature is limited to local or regional scales and lacks the generality necessary to predict soil warming and permafrost stability on a pan-Arctic scale. Here we synthesize shallow soil and air temperature observations with broad spatial and temporal coverage collected across 106 sites representing nine different vegetation types in the permafrost region. We showed ecosystems with tall-statured shrubs and trees (>40 cm) have warmer shallow soils than those with short-statured tundra vegetation when normalized to a constant air temperature. In tree and tall shrub vegetation types, cooler temperatures in the warm season do not lead to cooler mean annual soil temperature indicating that ground thermal regimes in the cold-season rather than the warm-season are most critical for predicting soil warming in ecosystems underlain by permafrost. Our results suggest that the expansion of tall shrubs and trees into tundra regions can amplify shallow soil warming, and could increase the potential for increased seasonal thaw depth and increase soil carbon cycling rates and lead to increased carbon dioxide loss and further permafrost thaw.
  • Article
    Drought legacies influence the long-term carbon balance of a freshwater marsh
    (American Geophysical Union, 2010-09-30) Rocha, Adrian V. ; Goulden, Michael L.
    Experimental manipulations provide a powerful tool for understanding an ecosystem's response to environmental perturbation. We combined paired eddy covariance towers with an experimental manipulation of water availability to determine the response of marsh carbon balance to drought. We monitored the Net Ecosystem Exchange of CO2 (NEE) in two ponds from 2004 to 2009 at the San Joaquin Freshwater Marsh (SJFM), and subjected one of the ponds to a yearlong drought treatment in 2007. The two ponds experienced similar flooding and environmental regimes before and after the drought, ensuring that differences between ponds were largely attributable to the 2007 drought. Drought substantially reduced surface greenness, as measured by the Enhanced Vegetation Index (EVI) and photosynthetic carbon sequestration, primarily by inhibiting leaf area development. Respiratory carbon losses were less influenced by drought than photosynthetic carbon gains. The effect of the drought lasted several years, with delayed leaf area development and peak carbon uptake rates during the subsequent year, and reduced leaf area for a couple of years. The combined effect of the drought and legacy effects created an overall loss of carbon that was equivalent to 4 years of the maximum annual carbon sequestration observed over a decade. Our results indicate that drought can have long-term impacts on ecosystem carbon balance and that future projected drought increases in Southern California will have a negative impact on marsh carbon sequestration.
  • Article
    Biomass offsets little or none of permafrost carbon release from soils, streams, and wildfire : an expert assessment
    (IOPScience, 2016-03-07) Abbott, Benjamin W. ; Jones, Jeremy B. ; Schuur, Edward A. G. ; Chapin, F. Stuart ; Bowden, William B. ; Bret-Harte, M. Syndonia ; Epstein, Howard E. ; Flannigan, Michael ; Harms, Tamara K. ; Hollingsworth, Teresa N. ; Mack, Michelle C. ; McGuire, A. David ; Natali, Susan M. ; Rocha, Adrian V. ; Tank, Suzanne E. ; Turetsky, Merritt R. ; Vonk, Jorien E. ; Wickland, Kimberly ; Aiken, George R. ; Alexander, Heather D. ; Amon, Rainer M. W. ; Benscoter, Brian ; Bergeron, Yves ; Bishop, Kevin ; Blarquez, Olivier ; Bond-Lamberty, Benjamin ; Breen, Amy L. ; Buffam, Ishi ; Cai, Yihua ; Carcaillet, Christopher ; Carey, Sean K. ; Chen, Jing M. ; Chen, Han Y. H. ; Christensen, Torben R. ; Cooper, Lee W. ; Cornelissen, Johannes H. C. ; de Groot, William J. ; DeLuca, Thomas Henry ; Dorrepaal, Ellen ; Fetcher, Ned ; Finlay, Jacques C. ; Forbes, Bruce C. ; French, Nancy H. F. ; Gauthier, Sylvie ; Girardin, Martin ; Goetz, Scott J. ; Goldammer, Johann G. ; Gough, Laura ; Grogan, Paul ; Guo, Laodong ; Higuera, Philip E. ; Hinzman, Larry ; Hu, Feng Sheng ; Hugelius, Gustaf ; JAFAROV, ELCHIN ; Jandt, Randi ; Johnstone, Jill F. ; Karlsson, Jan ; Kasischke, Eric S. ; Kattner, Gerhard ; Kelly, Ryan ; Keuper, Frida ; Kling, George W. ; Kortelainen, Pirkko ; Kouki, Jari ; Kuhry, Peter ; Laudon, Hjalmar ; Laurion, Isabelle ; Macdonald, Robie W. ; Mann, Paul J. ; Martikainen, Pertti ; McClelland, James W. ; Molau, Ulf ; Oberbauer, Steven F. ; Olefeldt, David ; Paré, David ; Parisien, Marc-André ; Payette, Serge ; Peng, Changhui ; Pokrovsky, Oleg ; Rastetter, Edward B. ; Raymond, Peter A. ; Raynolds, Martha K. ; Rein, Guillermo ; Reynolds, James F. ; Robards, Martin ; Rogers, Brendan ; Schädel, Christina ; Schaefer, Kevin ; Schmidt, Inger K. ; Shvidenko, Anatoly ; Sky, Jasper ; Spencer, Robert G. M. ; Starr, Gregory ; Striegl, Robert ; Teisserenc, Roman ; Tranvik, Lars J. ; Virtanen, Tarmo ; Welker, Jeffrey M. ; Zimov, Sergey A.
    As the permafrost region warms, its large organic carbon pool will be increasingly vulnerable to decomposition, combustion, and hydrologic export. Models predict that some portion of this release will be offset by increased production of Arctic and boreal biomass; however, the lack of robust estimates of net carbon balance increases the risk of further overshooting international emissions targets. Precise empirical or model-based assessments of the critical factors driving carbon balance are unlikely in the near future, so to address this gap, we present estimates from 98 permafrost-region experts of the response of biomass, wildfire, and hydrologic carbon flux to climate change. Results suggest that contrary to model projections, total permafrost-region biomass could decrease due to water stress and disturbance, factors that are not adequately incorporated in current models. Assessments indicate that end-of-the-century organic carbon release from Arctic rivers and collapsing coastlines could increase by 75% while carbon loss via burning could increase four-fold. Experts identified water balance, shifts in vegetation community, and permafrost degradation as the key sources of uncertainty in predicting future system response. In combination with previous findings, results suggest the permafrost region will become a carbon source to the atmosphere by 2100 regardless of warming scenario but that 65%–85% of permafrost carbon release can still be avoided if human emissions are actively reduced.
  • Preprint
    The application of δ18O and δD for understanding water pools and fluxes in a Typha Marsh
    ( 2011-05) Bijoor, Neeta S. ; Pataki, Diane E. ; Rocha, Adrian V. ; Goulden, Michael L.
    The δ18O and δD composition of water pools (leaf, root, standing water, and soil water) and fluxes (transpiration, evaporation) were used to understand ecohydrological processes in a managed Typha latifolia L. freshwater marsh. We observed isotopic steady state transpiration and deep rooting in Typha. The isotopic mass balance of marsh standing water showed that evaporation accounted for 3% of the total water loss, transpiration accounted for 17%, and subsurface drainage accounted for the majority, 80%. There was a vertical gradient in water vapor content and isotopic composition within and above the canopy sufficient for constructing an isotopic mass balance of water vapor during some sampling periods. During these periods, the proportion of transpiration in evapotranspiration (T/ET) was between 56 ± 17% to 96 ± 67%, and the estimated error was relatively high (>37%) due to non-local, background sources in vapor. Independent estimates of T/ET using eddy covariance measurements yielded similar mean values during the Typha growing season. The various T/ET estimates agreed that transpiration was the dominant source of marsh vapor loss in the growing season. The isotopic mass balance of water vapor yielded reasonable results, but the mass balance of standing water provided more definitive estimates of water losses.
  • Article
    The footprint of Alaskan tundra fires during the past half-century : implications for surface properties and radiative forcing
    (IOP Publishing, 2012-12-19) Rocha, Adrian V. ; Loranty, Michael M. ; Higuera, Philip E. ; Mack, Michelle C. ; Hu, Feng Sheng ; Jones, Benjamin M. ; Breen, Amy L. ; Rastetter, Edward B. ; Goetz, Scott J. ; Shaver, Gaius R.
    Recent large and frequent fires above the Alaskan arctic circle have forced a reassessment of the ecological and climatological importance of fire in arctic tundra ecosystems. Here we provide a general overview of the occurrence, distribution, and ecological and climate implications of Alaskan tundra fires over the past half-century using spatially explicit climate, fire, vegetation and remote sensing datasets for Alaska. Our analyses highlight the importance of vegetation biomass and environmental conditions in regulating tundra burning, and demonstrate that most tundra ecosystems are susceptible to burn, providing the environmental conditions are right. Over the past two decades, fire perimeters above the arctic circle have increased in size and importance, especially on the North Slope, indicating that future wildfire projections should account for fire regime changes in these regions. Remote sensing data and a literature review of thaw depths indicate that tundra fires have both positive and negative implications for climatic feedbacks including a decadal increase in albedo radiative forcing immediately after a fire, a stimulation of surface greenness and a persistent long-term (>10 year) increase in thaw depth. In order to address the future impact of tundra fires on climate, a better understanding of the control of tundra fire occurrence as well as the long-term impacts on ecosystem carbon cycling will be required.