Taylor
Craig D.
Taylor
Craig D.
No Thumbnail Available
Search Results
Now showing
1 - 11 of 11
-
ArticleUnexpected diversity of bacteria capable of carbon monoxide oxidation in a coastal marine environment, and contribution of the Roseobacter-cssociated clade to total CO oxidation(American Society for Microbiology, 2006-03) Tolli, John D. ; Sievert, Stefan M. ; Taylor, Craig D.The species diversity, phylogenetic affiliations, and physiological activity rates of carbon monoxide-oxidizing microorganisms were investigated, using new isolates from surface waters collected from the coast of New England and type strains from established collections. A direct isolation method allowed the simultaneous recovery of organisms with different growth rates and nutritional requirements and the identification of marine microorganisms that oxidize CO at an environmentally relevant concentration (42 nM CO). Isolates that oxidized CO at environmentally relevant rates (>4.5 x 10–11 nmol CO oxidized cell–1 h–1) were taxonomically diverse, with representatives in the alpha and gamma subclasses of the Proteobacteria and the phylum Bacteroidetes, and represent a hitherto unreported metabolic function for several diverse microbial types. Isolates and type strains having the greatest specific rates of CO metabolism (1.1 x 10–10 to 2.3 x 10–10 nmol CO oxidized cell–1 h–1) belonged to the Roseobacter-associated clade (RAC) of the alpha subclass of the Proteobacteria. By using triple-labeled slide preparations, differential counts of active CO-oxidizing RAC cells, total RAC cells, and total bacterial cell counts in environmental samples were obtained. RAC organisms were a major component of total cell numbers (36%). Based on the density of active CO-oxidizing RAC cells in natural samples and RAC-specific metabolic activities determined for pure cultures, active CO-oxidizing RAC cells may contribute up to 15% of the total CO oxidation occurring in coastal waters.
-
ArticleEvidence for autotrophic CO2 fixation via the reductive tricarboxylic acid cycle by members of the ε subdivision of proteobacteria(American Society for Microbiology, 2005-05) Hugler, Michael ; Wirsen, Carl O. ; Fuchs, Georg ; Taylor, Craig D. ; Sievert, Stefan M.Based on 16S rRNA gene surveys, bacteria of the ε subdivision of proteobacteria have been identified to be important members of microbial communities in a variety of environments, and quite a few have been demonstrated to grow autotrophically. However, no information exists on what pathway of autotrophic carbon fixation these bacteria might use. In this study, Thiomicrospira denitrificans and Candidatus Arcobacter sulfidicus, two chemolithoautotrophic sulfur oxidizers of the ε subdivision of proteobacteria, were examined for activities of the key enzymes of the known autotrophic CO2 fixation pathways. Both organisms contained activities of the key enzymes of the reductive tricarboxylic acid cycle, ATP citrate lyase, 2-oxoglutarate:ferredoxin oxidoreductase, and pyruvate:ferredoxin oxidoreductase. Furthermore, no activities of key enzymes of other CO2 fixation pathways, such as the Calvin cycle, the reductive acetyl coenzyme A pathway, and the 3-hydroxypropionate cycle, could be detected. In addition to the key enzymes, the activities of the other enzymes involved in the reductive tricarboxylic acid cycle could be measured. Sections of the genes encoding the {alpha}- and ß-subunits of ATP citrate lyase could be amplified from both organisms. These findings represent the first direct evidence for the operation of the reductive tricarboxylic acid cycle for autotrophic CO2 fixation in {varepsilon}-proteobacteria. Since {varepsilon}-proteobacteria closely related to these two organisms are important in many habitats, such as hydrothermal vents, oxic-sulfidic interfaces, or oilfields, these results suggest that autotrophic CO2 fixation via the reductive tricarboxylic acid cycle might be more important than previously considered.
-
PreprintComparison of Niskin vs. in situ approaches for analysis of gene expression in deep Mediterranean Sea water samples( 2014-10) Edgcomb, Virginia P. ; Taylor, Craig D. ; Pachiadaki, Maria G. ; Honjo, Susumu ; Engstrom, Ivory B. ; Yakimov, Michail M.Obtaining an accurate picture of microbial processes occurring in situ is essential for our understanding of marine biogeochemical cycles of global importance. Water samples are typically collected at depth and returned to the sea surface for processing and downstream experiments. Metatranscriptome analysis is one powerful approach for investigating metabolic activities of microorganisms in their habitat and which can be informative for determining responses of microbiota to disturbances such as the Deepwater Horizon oil spill. For studies of microbial processes occurring in the deep sea, however, sample handling, pressure, and other changes during sample recovery can subject microorganisms to physiological changes that alter the expression profile of labile messenger RNA. Here we report a comparison of gene expression profiles for whole microbial communities in a bathypelagic water column sample collected in the Eastern Mediterranean Sea using Niskin bottle sample collection and a new water column sampler for studies of marine microbial ecology, the Microbial Sampler – In Situ Incubation Device (MS-SID). For some taxa, gene expression profiles from samples collected and preserved 33 in situ were significantly different from potentially more stressful Niskin sampling and 34 preservation on deck. Some categories of transcribed genes also appear to be affected by sample 35 handling more than others. This suggests that for future studies of marine microbial ecology, 36 particularly targeting deep sea samples, an in situ sample collection and preservation approach 37 should be considered.
-
PreprintBiological CO oxidation in the Sargasso Sea and in Vineyard Sound, Massachusetts( 2005) Tolli, John D. ; Taylor, Craig D.In situ dissolved carbon monoxide (CO) in oligotrophic waters follows a diel cycle varying from 0.3 to 0.5 nmol L-1 before dawn to 2.5 to 3 nmol L-1 in early afternoon, when photo-production of CO exceeds biological CO oxidation and other sinks. Coastal waters may contain up to 15 nmol L-1 [CO] in the daytime. Assays to measure the rate of CO bio-oxidation typically involve the addition of labeled CO to sealed samples, resulting in CO concentrations that are above ambient levels during incubation (up to 9 nmol L-1 CO). We find that biological oxidation of CO obeys first-order kinetics when incubated with up to 4 nmol L-1 [CO] in coastal water samples and up to between 4 and 10.8 nmol L-1 in oligotrophic waters. At higher [CO], kinetic behavior transitions to zero-order or saturation kinetics. CO–oxidation rate coefficients obtained in dark incubations were not representative of the entire diurnal period, as others have assumed. Biological CO–oxidation rate coefficients kco measured in dark incubations of Sargasso Sea surface water in summer were 0.020 ± 0.002 h-1 (mean ± standard deviation) and an order of magnitude greater than those measured in situ during daylight hours (0.002 ± 0.001 h-1). Dark and in situ rate coefficients in early spring were 0.006 ± 0.004 h-1 and 0.003 ± 0.001 h-1, respectively. In dark incubations of Vineyard Sound water, kco was 0.127 ± 0.038 h-1. The apparent half-saturation constant Kapp for CO ranged from 2.04 to 5.44 nmol L-1 CO in both environments.
-
ArticleSampling and processing methods impact microbial community structure and potential activity in a seasonally anoxic fjord: Saanich Inlet, British Columbia.(Frontiers Media, 2019-03-22) Torres-Beltrán, Mónica ; Mueller, Andreas ; Scofield, Melanie ; Pachiadaki, Maria G. ; Taylor, Craig D. ; Tyshchenko, Kateryna ; Michiels, Céline ; Lam, Phyllis ; Ulloa, Osvaldo ; Jürgens, Klaus ; Hyun, Jung-Ho ; Edgcomb, Virginia P. ; Crowe, Sean A. ; Hallam, Steven J.The Scientific Committee on Oceanographic Research (SCOR) Working Group 144 Microbial Community Responses to Ocean Deoxygenation workshop held in Vancouver, B.C on July 2014 had the primary objective of initiating a process to standardize operating procedures for compatible process rate and multi-omic (DNA, RNA, protein, and metabolite) data collection in marine oxygen minimum zones and other oxygen depleted waters. Workshop attendees participated in practical sampling and experimental activities in Saanich Inlet, British Columbia, a seasonally anoxic fjord. Experiments were designed to compare and cross-calibrate in situ versus bottle sampling methods to determine effects on microbial community structure and potential activity when using different filter combinations, filtration methods, and sample volumes. Resulting biomass was preserved for small subunit ribosomal RNA (SSU or 16S rRNA) and SSU rRNA gene (rDNA) amplicon sequencing followed by downstream statistical and visual analyses. Results from these analyses showed that significant community shifts occurred between in situ versus on ship processed samples. For example, Bacteroidetes, Alphaproteobacteria, and Opisthokonta associated with on-ship filtration onto 0.4 μm filters increased fivefold compared to on-ship in-line 0.22 μm filters or 0.4 μm filters processed and preserved in situ. In contrast, Planctomycetes associated with 0.4 μm in situ filters increased fivefold compared to on-ship filtration onto 0.4 μm filters and on-ship in-line 0.22 μm filters. In addition, candidate divisions and Chloroflexi were primarily recovered when filtered onto 0.4 μm filters in situ. Results based on rRNA:rDNA ratios for microbial indicator groups revealed previously unrecognized roles of candidate divisions, Desulfarculales, and Desulfuromandales in sulfur cycling, carbon fixation and fermentation within anoxic basin waters. Taken together, filter size and in situ versus on-ship filtration had the largest impact on recovery of microbial groups with the potential to influence downstream metabolic reconstruction and process rate measurements. These observations highlight the need for establishing standardized and reproducible techniques that facilitate cross-scale comparisons and more accurately assess in situ activities of microbial communities.
-
ArticleA review of protist grazing below the photic zone emphasizing studies of oxygen-depleted water columns and recent applications of in situ approaches(Frontiers Media, 2017-04-26) Medina Faull, Luis E. ; Taylor, Craig D. ; Pachiadaki, Maria G. ; Henríquez-Castillo, Carlos ; Ulloa, Osvaldo ; Edgcomb, Virginia P.Little is still known of the impacts of protist grazing on bacterioplankton communities in the dark ocean. Furthermore, the accuracy of assessments of in situ microbial activities, including protist grazing, can be affected by sampling artifacts introduced during sample retrieval and downstream manipulations. Potential artifacts may be increased when working with deep-sea samples or samples from chemically unique water columns such as oxygen minimum zones (OMZs). OMZs are oxygen-depleted regions in the ocean, where oxygen concentrations can drop to <20 μM. These regions are typically located near eastern boundary upwelling systems and currently occur in waters occupying below about 8% of total ocean surface area, representing ~1% of the ocean's volume. OMZs have a profound impact not only on the distribution of marine Metazoa, but also on the composition and activities of microbial communities at the base of marine food webs. Here we present an overview of current knowledge of protist phagotrophy below the photic zone, emphasizing studies of oxygen-depleted waters and presenting results of the first attempt to implement new technology for conducting these incubation studies completely in situ (the Microbial Sampling- Submersible Incubation Device, MS-SID). We performed 24-h incubation experiments in the Eastern Tropical South Pacific (ETSP) OMZ. This preliminary study shows that up to 28% of bacterial biomass may be consumed by protists in waters where oxygen concentrations were down to ~4.8 μM and up to 13% at a station with nitrite accumulation where oxygen concentrations were undetectable. Results also show that shipboard measurements of grazing rates were lower than rates measured from the same water using the MS-SID, suggesting that in situ experiments help to minimize artifacts that may be introduced when conducting incubation studies using waters collected from below the photic zone, particularly from oxygen-depleted regions of the water column.
-
PreprintAutonomous Microbial Sampler (AMS), a device for the uncontaminated collection of multiple microbial samples from submarine hydrothermal vents and other aquatic environments( 2006-01-11) Taylor, Craig D. ; Doherty, Kenneth W. ; Molyneaux, Stephen J. ; Morrison, Archie T. ; Billings, John D. ; Engstrom, Ivory B. ; Pfitsch, Don W. ; Honjo, SusumuAn Autonomous Microbial Sampler (AMS) is described that will obtain uncontaminated and exogenous DNA-free microbial samples from most marine, fresh water and hydrothermal ecosystems. Sampling with the AMS may be conducted using manned submersibles, Remotely Operated Vehicles (ROVs), Autonomous Underwater Vehicles (AUVs), or when tethered to a hydrowire during hydrocast operations on research vessels. The modular device consists of a titanium nozzle for sampling in potentially hot environments (>350°C) and fluid-handling components for the collection of six independent filtered or unfiltered samples. An onboard microcomputer permits sampling to be controlled by the investigator, by external devices (e.g., AUV computer), or by internal programming. Temperature, volume pumped and other parameters are recorded during sampling. Complete protection of samples from microbial contamination was observed in tests simulating deployment of the AMS in coastal seawater, where the sampling nozzle was exposed to seawater containing 1x106 cells ml-1 of a red pigmented tracer organism, Serratia marinorubra. Field testing of the AMS at a hydrothermal vent field was successfully undertaken in 2000. Results of DNA destruction studies have revealed that exposure of samples of the Eukaryote Euglena and the bacterium S. marinorubra to 0.5 N sulfuric acid at 23°C for 1 hour was sufficient to remove Polymerase Chain Reaction (PCR) amplifiable DNA. Studies assessing the suitability of hydrogen peroxide as a sterilizing and DNA-destroying agent showed that 20 or 30% hydrogen peroxide sterilized samples of Serratia in 1 hr and destroyed the DNA of Serratia, in 3 hrs, but not 1 or 2 hrs. DNA AWAY™ killed Serratia and destroyed the DNA of both Serratia and the vent microbe (GB-D) of the genus Pyrococcus in 1 hour.
-
ArticleCharacterization of an autotrophic sulfide-oxidizing marine Arcobacter sp. that produces filamentous sulfur(American Society for Microbiology, 2002-01) Wirsen, Carl O. ; Sievert, Stefan M. ; Cavanaugh, Colleen M. ; Molyneaux, Stephen J. ; Ahmad, Azeem ; Taylor, L. T. ; DeLong, Edward F. ; Taylor, Craig D.A coastal marine sulfide-oxidizing autotrophic bacterium produces hydrophilic filamentous sulfur as a novel metabolic end product. Phylogenetic analysis placed the organism in the genus Arcobacter in the epsilon subdivision of the Proteobacteria. This motile vibrioid organism can be considered difficult to grow, preferring to grow under microaerophilic conditions in flowing systems in which a sulfide-oxygen gradient has been established. Purified cell cultures were maintained by using this approach. Essentially all 4',6-diamidino-2-phenylindole dihydrochloride-stained cells in a flowing reactor system hybridized with Arcobacter-specific probes as well as with a probe specific for the sequence obtained from reactor-grown cells. The proposed provisional name for the coastal isolate is "Candidatus Arcobacter sulfidicus." For cells cultured in a flowing reactor system, the sulfide optimum was higher than and the CO2 fixation activity was as high as or higher than those reported for other sulfur oxidizers, such as Thiomicrospira spp. Cells associated with filamentous sulfur material demonstrated nitrogen fixation capability. No ribulose 1,5-bisphosphate carboxylase/oxygenase could be detected on the basis of radioisotopic activity or by Western blotting techniques, suggesting an alternative pathway of CO2 fixation. The process of microbial filamentous sulfur formation has been documented in a number of marine environments where both sulfide and oxygen are available. Filamentous sulfur formation by "Candidatus Arcobacter sulfidicus" or similar strains may be an ecologically important process, contributing significantly to primary production in such environments.
-
ArticleUnderstanding the role of the biological pump in the global carbon cycle : an imperative for ocean science(The Oceanography Society, 2014-09) Honjo, Susumu ; Eglinton, Timothy I. ; Taylor, Craig D. ; Ulmer, Kevin M. ; Sievert, Stefan M. ; Bracher, Astrid ; German, Christopher R. ; Edgcomb, Virginia P. ; Francois, Roger ; Iglesias-Rodriguez, M. Debora ; Van Mooy, Benjamin A. S. ; Repeta, Daniel J.Anthropogenically driven climate change will rapidly become Earth's dominant transformative influence in the coming decades. The oceanic biological pump—the complex suite of processes that results in the transfer of particulate and dissolved organic carbon from the surface to the deep ocean—constitutes the main mechanism for removing CO2 from the atmosphere and sequestering carbon at depth on submillennium time scales. Variations in the efficacy of the biological pump and the strength of the deep ocean carbon sink, which is larger than all other bioactive carbon reservoirs, regulate Earth's climate and have been implicated in past glacial-interglacial cycles. The numerous biological, chemical, and physical processes involved in the biological pump are inextricably linked and heterogeneous over a wide range of spatial and temporal scales, and they influence virtually the entire ocean ecosystem. Thus, the functioning of the oceanic biological pump is not only relevant to the modulation of Earth's climate but also constitutes the basis for marine biodiversity and key food resources that support the human population. Our understanding of the biological pump is far from complete. Moreover, how the biological pump and the deep ocean carbon sink will respond to the rapid and ongoing anthropogenic changes to our planet—including warming, acidification, and deoxygenation of ocean waters—remains highly uncertain. To understand and quantify present-day and future changes in biological pump processes requires sustained global observations coupled with extensive modeling studies supported by international scientific coordination and funding.
-
ArticleExamination of microbial proteome preservation techniques applicable to autonomous environmental sample collection(Frontiers Media, 2011-11-07) Saito, Mak A. ; Bulygin, Vladimir V. ; Moran, Dawn M. ; Taylor, Craig D. ; Scholin, Christopher A.Improvements in temporal and spatial sampling frequency have the potential to open new windows into the understanding of marine microbial dynamics. In recent years, efforts have been made to allow automated samplers to collect microbial biomass for DNA/RNA analyses from moored observatories and autonomous underwater vehicles. Measurements of microbial proteins are also of significant interest given their biogeochemical importance as enzymes that catalyze reactions and transporters that interface with the environment. We examined the influence of five preservatives solutions (SDS-extraction buffer, ethanol, trichloroacetic acid, B-PER, and RNAlater) on the proteome integrity of the marine cyanobacterium Synechococcus WH8102 after 4 weeks of storage at room temperature. Four approaches were used to assess degradation: total protein recovery, band integrity on an SDS detergent polyacrylamide electrophoresis (SDS-PAGE) gel, and number of protein identifications and relative abundances by 1-dimensional LC–MS/MS proteomic analyses. Total protein recoveries from the preserved samples were lower than the frozen control due to processing losses, which could be corrected for with internal standardization. The trichloroacetic acid preserved sample showed significant loss of protein band integrity on the SDS-PAGE gel. The RNAlater preserved sample showed the highest number of protein identifications (103% relative to the control; 520 ± 31 identifications in RNAlater versus 504 ± 4 in the control), equivalent to the frozen control. Relative abundances of individual proteins in the RNAlater treatment were quite similar to that of the frozen control (average ratio of 1.01 ± 0.27 for the 50 most abundant proteins), while the SDS-extraction buffer, ethanol, and B-PER all showed significant decreases in both number of identifications and relative abundances of individual proteins. Based on these findings, RNAlater was an effective proteome preservative, although further study is warranted on additional marine microbes.
-
ArticleThe diversity of sulfide oxidation and sulfate reduction genes expressed by the bacterial communities of the Cariaco Basin, Venezuela(Bentham Open, 2016-08-31) Rodriguez-Mora, Maria J. ; Edgcomb, Virginia P. ; Taylor, Craig D. ; Scranton, Mary I. ; Taylor, Gordon T. ; Chistoserdov, Andrei Y.Qualitative expression of dissimilative sulfite reductase (dsrA), a key gene in sulfate reduction, and sulfide:quinone oxidoreductase (sqr), a key gene in sulfide oxidation was investigated. Neither of the two could be amplified from mRNA retrieved with Niskin bottles but were amplified from mRNA retrieved by the Deep SID. The sqr and sqr-like genes retrieved from the Cariaco Basin were related to the sqr genes from a Bradyrhizobium sp., Methylomicrobium alcaliphilum, Sulfurovum sp. NBC37-1, Sulfurimonas autotrophica, Thiorhodospira sibirica and Chlorobium tepidum. The dsrA gene sequences obtained from the redoxcline of the Cariaco Basin belonged to chemoorganotrophic and chemoautotrophic sulfate and sulfur reducers belonging to the class Deltaproteobacteria (phylum Proteobacteria) and the order Clostridiales (phylum Firmicutes).