Larson Nordeen G.

No Thumbnail Available
Last Name
Larson
First Name
Nordeen G.
ORCID

Search Results

Now showing 1 - 3 of 3
  • Article
    Corrections for pumped SBE 41CP CTDs determined from stratified tank experiments
    (American Meteorological Society, 2019-04-23) Martini, Kim I. ; Murphy, David J. ; Schmitt, Raymond W. ; Larson, Nordeen G.
    Sea-Bird Scientific SBE 41CP CTDs are used on autonomous floats in the global Argo ocean observing program to measure the temperature and salinity of the upper ocean. While profiling, the sensors are subject to dynamic errors as they profile through vertical gradients. Applying dynamic corrections to the temperature and conductivity data reduces these errors and improves sensor accuracy. A series of laboratory experiments conducted in a stratified tank are used to characterize dynamic errors and determine corrections. The corrections are adapted for Argo floats, and recommendations for future implementation are presented.
  • Article
    Sensor corrections for Sea-Bird SBE-41CP and SBE-41 CTDs
    (American Meteorological Society, 2007-06) Johnson, Gregory C. ; Toole, John M. ; Larson, Nordeen G.
    Sensor response corrections for two models of Sea-Bird Electronics, Inc., conductivity–temperature–depth (CTD) instruments (the SBE-41CP and SBE-41) designed for low-energy profiling applications were estimated and applied to oceanographic data. Three SBE-41CP CTDs mounted on prototype ice-tethered profilers deployed in the Arctic Ocean sampled diffusive thermohaline staircases and telemetered data to shore at their full 1-Hz resolution. Estimations of and corrections for finite thermistor time response, time shifts between when a parcel of water was sampled by the thermistor and when it was sampled by the conductivity cell, and the errors in salinity induced by the thermal inertia of the conductivity cell are developed with these data. In addition, thousands of profiles from Argo profiling floats equipped with SBE-41 CTDs were screened to select examples where thermally well-mixed surface layers overlaid strong thermoclines for which standard processing often yields spuriously fresh salinity estimates. Hundreds of profiles so identified are used to estimate and correct for the conductivity cell thermal mass error in SBE-41 CTDs.
  • Article
    Reply to "comments on 'corrections for pumped SBE 41CP CTDs determined from stratified tank experiments'"
    (American Meteorological Society, 2020-02-24) Martini, Kim I. ; Murphy, David J. ; Schmitt, Raymond W. ; Larson, Nordeen G.
    The response in Johnson (2020) that the method used to determine cell thermal mass correction coefficients for SBE 41CP CTD data from Argo floats is biased as determined by Martini et al. (2019) is valid. However, the recommendation for correction coefficients should not be followed due to these three errors in Johnson (2020): Alignment is as large a source of dynamic error as cell thermal mass in the SBE 41CP CTD. Order of operations was overlooked, so that cell thermal mass is used to correct for alignment errors caused by the temporal mismatch of temperature and conductivity. The cell thermal mass corrections determined in Johnson et al. (2007) and Johnson (2020) also bias salinity. In this response we will do the following: Detail how the corrections in Johnson (2020) are biased because the optimization procedure does not accurately model physics in the tank and conductivity cell. Verify using in situ data from Argo floats deployed in the ocean that alignment is a significant source of error for the SBE 41CP as shown in Martini et al. (2019). Determine cell thermal mass correction coefficients from the stratified tank experiment merging the methods of Johnson (2020) and Martini et al. (2019) to optimize against a model that better represents the physics in the tank and conductivity cell. Compare the corrections using in situ data using the coefficients determined in Johnson et al. (2007), Martini et al. (2019), Johnson (2020), and this manuscript.