Fabry Victoria J.

No Thumbnail Available
Last Name
Fabry
First Name
Victoria J.
ORCID

Search Results

Now showing 1 - 3 of 3
  • Article
    Comment on “Modern-age buildup of CO2 and its effects on seawater acidity and salinity” by Hugo A. Loáiciga
    (American Geophysical Union, 2007-09-25) Caldeira, Ken ; Archer, David ; Barry, James P. ; Bellerby, Richard G. J. ; Brewer, Peter G. ; Cao, Long ; Dickson, Andrew G. ; Doney, Scott C. ; Elderfield, Henry ; Fabry, Victoria J. ; Feely, Richard A. ; Gattuso, Jean-Pierre ; Haugan, Peter M. ; Hoegh-Guldberg, Ove ; Jain, Atul K. ; Kleypas, Joan A. ; Langdon, Chris ; Orr, James C. ; Ridgwell, Andy ; Sabine, Christopher L. ; Seibel, Brad A. ; Shirayama, Yoshihisa ; Turley, Carol ; Watson, Andrew J. ; Zeebe, Richard E.
  • Preprint
    Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms
    ( 2005-07-29) Orr, James C. ; Fabry, Victoria J. ; Aumont, Olivier ; Bopp, Laurent ; Doney, Scott C. ; Feely, Richard A. ; Gnanadesikan, Anand ; Gruber, Nicolas ; Ishida, Akio ; Joos, Fortunat ; Key, Robert M. ; Lindsay, Keith ; Maier-Reimer, Ernst ; Matear, Richard J. ; Monfray, Patrick ; Mouchet, Anne ; Najjar, Raymond G. ; Plattner, Gian-Kasper ; Rodgers, Keith B. ; Sabine, Christopher L. ; Sarmiento, Jorge L. ; Schlitzer, Reiner ; Slater, Richard D. ; Totterdell, Ian J. ; Weirig, Marie-France ; Yamanaka, Yasuhiro ; Yool, Andrew
    The surface ocean is everywhere saturated with respect to calcium carbonate (CaCO3). Yet increasing atmospheric CO2 reduces ocean pH and carbonate ion concentrations [CO32−] and thus the level of saturation. Reduced saturation states are expected to affect marine calcifiers even though it has been estimated that all surface waters will remain saturated for centuries. Here we show, however, that some surface waters will become undersaturated within decades. When atmospheric CO2 reaches 550 ppmv, in year 2050 under the IS92a business-as-usual scenario, Southern Ocean surface waters begin to become undersaturated with respect to aragonite, a metastable form of CaCO3. By 2100 as atmospheric CO2 reaches 788 ppmv, undersaturation extends throughout the entire Southern Ocean (< 60°S) and into the subarctic Pacific. These changes will threaten high-latitude aragonite secreting organisms including cold-water corals, which provide essential fish habitat, and shelled pteropods, an abundant food source for marine predators.
  • Article
    Ocean acidification : a critical emerging problem for the ocean sciences
    (Oceanography Society, 2009-12) Doney, Scott C. ; Balch, William M. ; Fabry, Victoria J. ; Feely, Richard A.
    Over a period of less than a decade, ocean acidification—the change in seawater chemistry due to rising atmospheric carbon dioxide (CO2) levels and subsequent impacts on marine life—has become one of the most critical and pressing issues facing the ocean research community and marine resource managers alike. The objective of this special issue of Oceanography is to provide an overview of the current scientific understanding of ocean acidification as well as to indicate the substantial gaps in our present knowledge. Papers in the special issue discuss the past, current, and future trends in seawater chemistry; highlight potential vulnerabilities to marine species, ecosystems, and marine resources to elevated CO2; and outline a roadmap toward future research directions. In this introductory article, we present a brief introduction on ocean acidification and some historical context for how it emerged so quickly and recently as a key research topic.