Duffy
J. Emmett
Duffy
J. Emmett
No Thumbnail Available
Search Results
Now showing
1 - 10 of 10
-
ArticleEnvisioning a marine biodiversity observation network(University of California Press, 2013-05) Duffy, J. Emmett ; Amaral-Zettler, Linda A. ; Fautin, Daphne G. ; Paulay, Gustav ; Rynearson, Tatiana A. ; Sosik, Heidi M. ; Stachowicz, John J.Humans depend on diverse ocean ecosystems for food, jobs, and sustained well-being, yet many stressors threaten marine life. Extensive research has demonstrated that maintaining biodiversity promotes ocean health and service provision; therefore, monitoring the status and trends of marine biodiversity is important for effective ecosystem management. However, there is no systematic sustained program for evaluating ocean biodiversity. Coordinating existing monitoring and building a proactive marine biodiversity observation network will support efficient, economical resource management and conservation and should be a high priority. A synthesis of expert opinions suggests that, to be most effective, a marine biodiversity observation network should integrate biological levels, from genes to habitats; link biodiversity observations to abiotic environmental variables; site projects to incorporate environmental forcing and biogeography; and monitor adaptively to address emerging issues. We summarize examples illustrating how to leverage existing data and infrastructure to meet these goals.
-
ArticleIntegrated observations and informatics improve understanding of changing marine ecosystems(Frontiers Media, 2018-11-16) Benson, Abigail ; Brooks, Cassandra M. ; Canonico, Gabrielle ; Duffy, J. Emmett ; Muller-Karger, Frank E. ; Sosik, Heidi M. ; Miloslavich, Patricia ; Klein, EduardoMarine ecosystems have numerous benefits for human societies around the world and many policy initiatives now seek to maintain the health of these ecosystems. To enable wise decisions, up to date and accurate information on marine species and the state of the environment they live in is required. Moreover, this information needs to be openly accessible to build indicators and conduct timely assessments that decision makers can use. The questions and problems being addressed demand global-scale investigations, transdisciplinary science, and mechanisms to integrate and distribute data that otherwise would appear to be disparate. Essential Ocean Variables (EOVs) and marine Essential Biodiversity Variables (EBVs), conceptualized by the Global Ocean Observing System (GOOS) and the Marine Biodiversity Observation Network (MBON), respectively, guide observation of the ocean. Additionally, significant progress has been made to coordinate efforts between existing programs, such as the GOOS, MBON, and Ocean Biogeographic Information System collaboration agreement. Globally and nationally relevant indicators and assessments require increased sharing of data and analytical methods, sustained long-term and large-scale observations, and resources to dedicated to these tasks. We propose a vision and key tenets as a guiding framework for building a global integrated system for understanding marine biological diversity and processes to address policy and resource management needs. This framework includes: using EOVs and EBVs and implementing the guiding principles of Findable, Accessible, Interoperable, Reusable (FAIR) data and action ecology. In doing so, we can encourage relevant, rapid, and integrative scientific advancement that can be implemented by decision makers to maintain marine ecosystem health.
-
ArticleBioTIME : a database of biodiversity time series for the Anthropocene(John Wiley & Sons, 2018-07-24) Dornelas, Maria ; Antao, Laura H. ; Moyes, Faye ; Bates, Amanda E. ; Magurran, Anne E. ; Adam, Dusan ; Akhmetzhanova, Asem A. ; Appeltans, Ward ; Arcos, Jose Manuel ; Arnold, Haley ; Ayyappan, Narayanan ; Badihi, Gal ; Baird, Andrew H. ; Barbosa, Miguel ; Barreto, Tiago Egydio ; Bässler, Claus ; Bellgrove, Alecia ; Belmaker, Jonathan ; Benedetti-Cecchi, Lisandro ; Bett, Brian J. ; Bjorkman, Anne D. ; Błazewicz, Magdalena ; Blowes, Shane A. ; Bloch, Christopher P. ; Bonebrake, Timothy C. ; Boyd, Susan ; Bradford, Matt ; Brooks, Andrew J. ; Brown, James H. ; Bruelheide, Helge ; Budy, Phaedra ; Carvalho, Fernando ; Castaneda-Moya, Edward ; Chen, Chaolun Allen ; Chamblee, John F. ; Chase, Tory J. ; Collier, Laura Siegwart ; Collinge, Sharon K. ; Condit, Richard ; Cooper, Elisabeth J. ; Cornelissen, Johannes H. C. ; Cotano, Unai ; Crow, Shannan Kyle ; Damasceno, Gabriella ; Davies, Claire H. ; Davis, Robert A. ; Day, Frank P. ; Degraer, Steven ; Doherty, Tim S. ; Dunn, Timothy E. ; Durigan, Giselda ; Duffy, J. Emmett ; Edelist, Dor ; Edgar, Graham J. ; Elahi, Robin ; Elmendorf, Sarah C. ; Enemar, Anders ; Ernest, S. K. Morgan ; Escribano, Ruben ; Estiarte, Marc ; Evans, Brian S. ; Fan, Tung-Yung ; Farah, Fabiano Turini ; Fernandes, Luiz Loureiro ; Farneda, Fabio Z. ; Fidelis, Alessandra ; Fitt, Robert ; Fosaa, Anna Maria ; Franco, Geraldo Antonio Daher Correa ; Frank, Grace E. ; Fraser, William R. ; García, Hernando ; Gatti, Roberto Cazzolla ; Givan, Or ; Gorgone-Barbosa, Elizabeth ; Gould, William A. ; Gries, Corinna ; Grossman, Gary D. ; Gutierrez, Julio R. ; Hale, Stephen ; Harmon, Mark E. ; Harte, John ; Haskins, Gary ; Henshaw, Donald L. ; Hermanutz, Luise ; Hidalgo, Pamela ; Higuchi, Pedro ; Hoey, Andrew S. ; Hoey, Gert Van ; Hofgaard, Annika ; Holeck, Kristen ; Hollister, Robert D. ; Holmes, Richard ; Hoogenboom, Mia ; Hsieh, Chih-hao ; Hubbell, Stephen P. ; Huettmann, Falk ; Huffard, Christine L. ; Hurlbert, Allen H. ; Ivanauskas, Natalia Macedo ; Janík, David ; Jandt, Ute ; Jazdzewska, Anna ; Johannessen, Tore ; Johnstone, Jill F. ; Jones, Julia ; Jones, Faith A. M. ; Kang, Jungwon ; Kartawijaya, Tasrif ; Keeley, Erin C. ; Kelt, Douglas A. ; Kinnear, Rebecca ; Klanderud, Kari ; Knutsen, Halvor ; Koenig, Christopher C. ; Kortz, Alessandra R. ; Kral, Kamil ; Kuhnz, Linda A. ; Kuo, Chao-Yang ; Kushner, David J. ; Laguionie-Marchais, Claire ; Lancaster, Lesley T. ; Lee, Cheol Min ; Lefcheck, Jonathan S. ; Levesque, Esther ; Lightfoot, David ; Lloret, Francisco ; Lloyd, John D. ; Lopez-Baucells, Adria ; Louzao, Maite ; Madin, Joshua S. ; Magnusson, Borgbor ; Malamud, Shahar ; Matthews, Iain ; McFarland, Kent P. ; McGill, Brian ; McKnight, Diane ; McLarney, William O. ; Meador, Jason ; Meserve, Peter L. ; Metcalfe, Daniel J. ; Meyer, Christoph F. J. ; Michelsen, Anders ; Milchakova, Nataliya ; Moens, Tom ; Moland, Even ; Moore, Jon ; Moreira, Carolina Mathias ; Muller, Jorg ; Murphy, Grace ; Myers-Smith, Isla H. ; Myster, Randall W. ; Naumov, Andrew ; Neat, Francis ; Nelson, James A. ; Nelson, Michael Paul ; Newton, Stephen F. ; Norden, Natalia ; Oliver, Jeffrey C. ; Olsen, Esben M. ; Onipchenko, Vladimir G. ; Pabis, Krzysztof ; Pabst, Robert J. ; Paquette, Alain ; Pardede, Sinta ; Paterson, David M. ; Pelissier, Raphael ; Penuelas, Josep ; Perez-Matus, Alejandro ; Pizarro, Oscar ; Pomati, Francesco ; Post, Eric ; Prins, Herbert H. T. ; Priscu, John C. ; Provoost, Pieter ; Prudic, Kathleen L. ; Pulliainen, Erkki ; Ramesh, B. B. ; Ramos, Olivia Mendivil ; Rassweiler, Andrew ; Rebelo, Jose Eduardo ; Reed, Daniel C. ; Reich, Peter B. ; Remillard, Suzanne M. ; Richardson, Anthony J. ; Richardson, J. Paul ; Rijn, Itai van ; Rocha, Ricardo ; Rivera-Monroy, Victor H. ; Rixen, Christian ; Robinson, Kevin P. ; Rodrigues, Ricardo Ribeiro ; Rossa-Feres, Denise de Cerqueira ; Rudstam, Lars ; Ruhl, Henry A. ; Ruz, Catalina S. ; Sampaio, Erica M. ; Rybicki, Nancy ; Rypel, Andrew ; Sal, Sofia ; Salgado, Beatriz ; Santos, Flavio A. M. ; Savassi-Coutinho, Ana Paula ; Scanga, Sara ; Schmidt, Jochen ; Schooley, Robert ; Setiawan, Fakhrizal ; Shao, Kwang-Tsao ; Shaver, Gaius R. ; Sherman, Sally ; Sherry, Thomas W. ; Sicinski, Jacek ; Sievers, Caya ; da Silva, Ana Carolina ; da Silva, Fernando Rodrigues ; Silveira, Fabio L. ; Slingsby, Jasper ; Smart, Tracey ; Snell, Sara J. ; Soudzilovskaia, Nadejda A. ; Souza, Gabriel B. G. ; Souza, Flaviana Maluf ; Souza, Vinícius Castro ; Stallings, Christopher D. ; Stanforth, Rowan ; Stanley, Emily H. ; Sterza, Jose Mauro ; Stevens, Maarten ; Stuart-Smith, Rick ; Suarez, Yzel Rondon ; Supp, Sarah ; Tamashiro, Jorge Yoshio ; Tarigan, Sukmaraharja ; Thiede, Gary P. ; Thorn, Simon ; Tolvanen, Anne ; Toniato, Maria Teresa Zugliani ; Totland, Orjan ; Twilley, Robert R. ; Vaitkus, Gediminas ; Valdivia, Nelson ; Vallejo, Martha Isabel ; Valone, Thomas J. ; Van Colen, Carl ; Vanaverbeke, Jan ; Venturoli, Fabio ; Verheye, Hans M. ; Vianna, Marcelo ; Vieira, Rui P. ; Vrska, Tomas ; Vu, Con Quang ; Vu, Lien Van ; Waide, Robert B. ; Waldock, Conor ; Watts, David ; Webb, Sara ; Wesołowski, Tomasz ; White, Ethan P. ; Widdicombe, Claire E. ; Wilgers, Wilgers ; Williams, Richard ; Williams, Stefan B. ; Williamson, Mark ; Willig, Michael R. ; Willis, Trevor J. ; Wipf, Sonja ; Woods, Kerry D. ; Woehler, Eric ; Zawada, Kyle ; Zettler, Michael L.The BioTIME database contains raw data on species identities and abundances in ecological assemblages through time. These data enable users to calculate temporal trends in biodiversity within and amongst assemblages using a broad range of metrics. BioTIME is being developed as a community‐led open‐source database of biodiversity time series. Our goal is to accelerate and facilitate quantitative analysis of temporal patterns of biodiversity in the Anthropocene. The database contains 8,777,413 species abundance records, from assemblages consistently sampled for a minimum of 2 years, which need not necessarily be consecutive. In addition, the database contains metadata relating to sampling methodology and contextual information about each record. BioTIME is a global database of 547,161 unique sampling locations spanning the marine, freshwater and terrestrial realms. Grain size varies across datasets from 0.0000000158 km2 (158 cm2) to 100 km2 (1,000,000,000,000 cm2). BioTIME records span from 1874 to 2016. The minimal temporal grain across all datasets in BioTIME is a year. BioTIME includes data from 44,440 species across the plant and animal kingdoms, ranging from plants, plankton and terrestrial invertebrates to small and large vertebrates.
-
DatasetAbiotic and biotic data from Zostera Experimental Network (ZEN) 2014 surveys (ZEN 2 project)(Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu, 2021-04-19) Duffy, J Emmett ; Hovel, Kevin ; Stachowicz, John J. ; Reynolds, Pamela LThis dataset includes biomass and diversity measurements of eelgrass communities from 50 sites across the Northern Hemisphere. The purpose was to study the plant and animal responses to top-down and bottom-up manipulations in eelgrass (Zostera marina) habitat. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/712069
-
DatasetEelgrass shoot metrics from ecological field surveys in six regions along the eastern Pacific coast in June through August of 2019, 2020, and 2021.(Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu, 2022-10-21) Harvell, Drew ; Gomes, Carla P. ; Hawthorne, Timothy ; Stachowicz, John J. ; Duffy, J. Emmett ; Aoki, LillianThese data were collected during ecological field surveys of eelgrass (Zostera marina) meadows along the eastern Pacific from southeastern Alaska to southern California. Parameters measured include seagrass morphology, meadow condition (e.g. shoot densities), and incidence and severity of eelgrass wasting disease. Data were collected within the intertidal area of 32 eelgrass meadows distributed in six regions (five-six meadows sampled in the regions of Alaska, British Columbia, Washington, Oregon, California - Bodega Bay, and California - San Diego). Surveys were conducted in between late June and early August in 2019, 2020, and 2021 by teams from six institutions. The influence of disease on seagrass dynamics is not well understood, and these data can further understanding of the environmental drivers of disease by connecting wasting disease with eelgrass condition across a broad geographic gradient. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/878857
-
DatasetEelgrass disease metrics from ecological field surveys along the eastern Pacific coast in June through August of 2019, 2020, and 2021.(Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu, 2022-10-21) Harvell, Drew ; Gomes, Carla P. ; Hawthorne, Timothy ; Stachowicz, John J. ; Duffy, J. Emmett ; Aoki, LillianThese data were collected during ecological field surveys of eelgrass (Zostera marina) meadows along the eastern Pacific from southeastern Alaska to southern California. Parameters measured include seagrass morphology, meadow condition (e.g. shoot densities), and incidence and severity of eelgrass wasting disease. Data were collected within the intertidal area of 32 eelgrass meadows distributed in six regions (five-six meadows sampled in the regions of Alaska, British Columbia, Washington, Oregon, California - Bodega Bay, and California - San Diego). Surveys were conducted in between late June and early August in 2019, 2020, and 2021 by teams from six institutions. The influence of disease on seagrass dynamics is not well understood, and these data can further understanding of the environmental drivers of disease by connecting wasting disease with eelgrass condition across a broad geographic gradient. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/879780
-
DatasetExperimental results of tethered amphipod and isopod survival in global eelgrass habitats, summer 2015 (Zostera Experimental Network 2; ZEN2)(Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu, 2021-04-19) Hovel, Kevin ; Duffy, J Emmett ; Stachowicz, John J.This dataset includes survival of tethered amphipods and isopods in eelgrass plots, and the biomass of other organisms in the plots. The eelgrass beds were located globally. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/724015
-
DatasetIn situ temperature measurements from eelgrass meadow field sites along the west coast of North America recorded from July 2019 to July 2021(Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu, 2022-10-21) Harvell, Drew ; Gomes, Carla P. ; Hawthorne, Timothy ; Stachowicz, John J. ; Duffy, J. Emmett ; Aoki, LillianAs part of field surveys to measure effects of eelgrass wasting disease, HOBO temperature loggers were deployed from July 2019 to July 2021 at field sites along the west coast of North America to provide a continuous record of in situ temperatures. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/877355
-
ArticleNatural experiments and long-term monitoring are critical to understand and predict marine host-microbe ecology and evolution(Public Library of Science, 2021-08-19) Leray, Matthieu ; Wilkins, Laetitia G. E. ; Apprill, Amy ; Bik, Holly M. ; Clever, Friederike ; Connolly, Sean R. ; De León, Marina E. ; Duffy, J. Emmett ; Ezzat, Leïla ; Gignoux-Wolfsohn, Sarah ; Herre, Edward Allen ; Kaye, Jonathan Z. ; Kline, David ; Kueneman, Jordan G. ; McCormick, Melissa K. ; McMillan, W. Owen ; O’Dea, Aaron ; Pereira, Tiago J. ; Petersen, Jillian M. ; Petticord, Daniel F. ; Torchin, Mark ; Vega Thurber, Rebecca ; Videvall, Elin ; Wcislo, William T. ; Yuen, Benedict ; Eisen, Jonathan A.Marine multicellular organisms host a diverse collection of bacteria, archaea, microbial eukaryotes, and viruses that form their microbiome. Such host-associated microbes can significantly influence the host’s physiological capacities; however, the identity and functional role(s) of key members of the microbiome (“core microbiome”) in most marine hosts coexisting in natural settings remain obscure. Also unclear is how dynamic interactions between hosts and the immense standing pool of microbial genetic variation will affect marine ecosystems’ capacity to adjust to environmental changes. Here, we argue that significantly advancing our understanding of how host-associated microbes shape marine hosts’ plastic and adaptive responses to environmental change requires (i) recognizing that individual host–microbe systems do not exist in an ecological or evolutionary vacuum and (ii) expanding the field toward long-term, multidisciplinary research on entire communities of hosts and microbes. Natural experiments, such as time-calibrated geological events associated with well-characterized environmental gradients, provide unique ecological and evolutionary contexts to address this challenge. We focus here particularly on mutualistic interactions between hosts and microbes, but note that many of the same lessons and approaches would apply to other types of interactions.
-
DatasetEelgrass shoot density measurements taken during ecological field surveys along the eastern Pacific coast in June through August of 2019, 2020, and 2021.(Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu, 2022-10-21) Harvell, Drew ; Gomes, Carla P. ; Hawthorne, Timothy ; Stachowicz, John J. ; Duffy, J. Emmett ; Aoki, LillianThese data were collected during ecological field surveys of eelgrass (Zostera marina) meadows along the eastern Pacific from southeastern Alaska to southern California. Parameters measured include seagrass morphology, meadow condition (e.g. shoot densities), and incidence and severity of eelgrass wasting disease. Data were collected within the intertidal area of 32 eelgrass meadows distributed in six regions (five-six meadows sampled in the regions of Alaska, British Columbia, Washington, Oregon, California - Bodega Bay, and California - San Diego). Surveys were conducted in between late June and early August in 2019, 2020, and 2021 by teams from six institutions. The influence of disease on seagrass dynamics is not well understood, and these data can further understanding of the environmental drivers of disease by connecting wasting disease with eelgrass condition across a broad geographic gradient. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/879764