Curry Ruth G.

No Thumbnail Available
Last Name
Curry
First Name
Ruth G.
ORCID

Search Results

Now showing 1 - 11 of 11
  • Article
    Autonomous and Lagrangian ocean observations for Atlantic tropical cyclone studies and forecasts
    (Oceanography Society, 2017-06) Goni, Gustavo J. ; Todd, Robert E. ; Jayne, Steven R. ; Halliwell, George R. ; Glenn, Scott ; Dong, Jili ; Curry, Ruth G. ; Domingues, Ricardo ; Bringas, Francis ; Centurioni, Luca R. ; DiMarco, Steven F. ; Miles, Travis ; Morell, Julio M. ; Pomales, Luis ; Kim, Hyun-Sook ; Robbins, Pelle E. ; Gawarkiewicz, Glen G. ; Wilkin, John L. ; Heiderich, Joleen ; Baltes, Rebecca ; Cione, Joseph J. ; Seroka, Greg ; Knee, Kelly ; Sanabia, Elizabeth
    The tropical Atlantic basin is one of seven global regions where tropical cyclones (TCs) commonly originate, intensify, and affect highly populated coastal areas. Under appropriate atmospheric conditions, TC intensification can be linked to upper-ocean properties. Errors in Atlantic TC intensification forecasts have not been significantly reduced during the last 25 years. The combined use of in situ and satellite observations, particularly of temperature and salinity ahead of TCs, has the potential to improve the representation of the ocean, more accurately initialize hurricane intensity forecast models, and identify areas where TCs may intensify. However, a sustained in situ ocean observing system in the tropical North Atlantic Ocean and Caribbean Sea dedicated to measuring subsurface temperature, salinity, and density fields in support of TC intensity studies and forecasts has yet to be designed and implemented. Autonomous and Lagrangian platforms and sensors offer cost-effective opportunities to accomplish this objective. Here, we highlight recent efforts to use autonomous platforms and sensors, including surface drifters, profiling floats, underwater gliders, and dropsondes, to better understand air-sea processes during high-wind events, particularly those geared toward improving hurricane intensity forecasts. Real-time data availability is key for assimilation into numerical weather forecast models.
  • Preprint
    Trajectory shifts in the Arctic and Subarctic freshwater cycle
    ( 2006-06-22) Peterson, Bruce J. ; McClelland, James W. ; Curry, Ruth G. ; Holmes, Robert M. ; Walsh, John E. ; Aagaard, Knut
    Manifold changes in the freshwater cycle of high-latitude lands and oceans have been reported in the past few years. A synthesis of these changes in sources of freshwater and in ocean freshwater storage illustrates the complementary and synoptic temporal pattern and magnitude of these changes over the past 50 years. Increasing river discharge anomalies and excess net precipitation on the ocean contributed ~20,000 km3 of fresh water to the Arctic and high latitude North Atlantic oceans from lows in the 1960s to highs in the 1990s. Sea ice attrition provided another ~15,000 km3, and glacial melt added ~2000 km3. The sum of anomalous inputs from these freshwater sources matched the amount and rate at which fresh water accumulated in the North Atlantic during much of the period from 1965 through 1995. The changes in freshwater inputs and ocean storage occurred in conjunction with the amplifying North Atlantic Oscillation and rising air temperatures. Fresh water may now be accumulating in the Arctic Ocean and will likely be exported southward if and when the North Atlantic Oscillation enters into a new high phase.
  • Article
    Oleander is more than a flower twenty-five years of oceanography aboard a merchant vessel
    (Oceanography Society, 2019-09-05) Rossby, H. Thomas ; Flagg, Charles Noel ; Donohue, Kathleen A. ; Fontana, Sandra ; Curry, Ruth G. ; Andres, Magdalena ; Forsyth, Jacob S. T.
    Since late fall 1992, CMV Oleander III has been measuring upper ocean currents during its weekly trips between Bermuda and Port Elizabeth, New Jersey, by means of an acoustic Doppler current profiler installed in its hull. The overarching objective of this effort has been to monitor transport in the Gulf Stream and surrounding waters. With 25 years of observation in hand, we note that the Gulf Stream exhibits significant year-to-year variations but no evident long-term trend in transport. We show how these data have enabled studies of oceanic variability over a very wide range of scales, from a few kilometers to the full 1,000 km length of its route. We report that the large interannual variations in temperature on the continental shelf are negatively correlated with flow from the Labrador Sea, but that variability in the strength of this flow cannot account for a longer-term warming trend observed on the shelf. Acoustic backscatter data offer a rich trove of information on biomass activities over a wide range of spatial and temporal scales. A peek at the future illustrates how the new and newly equipped Oleander will be able to profile currents to greater depths and thereby contribute to monitoring the strength of the meridional overturning circulation.
  • Article
    Time series measurements of transient tracers and tracer-derived transport in the Deep Western Boundary Current between the Labrador Sea and the subtropical Atlantic Ocean at Line W
    (John Wiley & Sons, 2016-11-10) Smith, John N. ; Smethie, William M. ; Yashayaev, Igor ; Curry, Ruth G. ; Azetsu-Scott, Kumiko
    Time series measurements of the nuclear fuel reprocessing tracer 129I and the gas ventilation tracer CFC-11 were undertaken on the AR7W section in the Labrador Sea (1997–2014) and on Line W (2004–2014), located over the US continental slope off Cape Cod, to determine advection and mixing time scales for the transport of Denmark Strait Overflow Water (DSOW) within the Deep Western Boundary Current (DWBC). Tracer measurements were also conducted in 2010 over the continental rise southeast of Bermuda to intercept the equatorward flow of DSOW by interior pathways. The Labrador Sea tracer and hydrographic time series data were used as input functions in a boundary current model that employs transit time distributions to simulate the effects of mixing and advection on downstream tracer distributions. Model simulations of tracer levels in the boundary current core and adjacent interior (shoulder) region with which mixing occurs were compared with the Line W time series measurements to determine boundary current model parameters. These results indicate that DSOW is transported from the Labrador Sea to Line W via the DWBC on a time scale of 5–6 years corresponding to a mean flow velocity of 2.7 cm/s while mixing between the core and interior regions occurs with a time constant of 2.6 years. A tracer section over the southern flank of the Bermuda rise indicates that the flow of DSOW that separated from the DWBC had undergone transport through interior pathways on a time scale of 9 years with a mixing time constant of 4 years.
  • Technical Report
    HYDROBASE : a database of hydrographic stations and tools for climatological analysis
    (Woods Hole Oceanographic Institution, 1996-03) Curry, Ruth G.
    This report documents the organization, functionality, and algorithms of a software package which operates as a database manager and toolset for climatological analysis of hydrographic station data. It details the methods of quality control used in constrction of the small, but growing, database and discusses some of the improvements HydroBase methods offer over existing gridded databases, including a short comparison to Levitus's World Ocean Atlas 1994 package. A large porton of this technical reference is devoted to describing the software modules and providing examples for their use.
  • Article
    Continuous, array-based estimates of Atlantic Ocean heat transport at 26.5°N
    (American Meteorological Society, 2011-05-15) Johns, William E. ; Baringer, Molly O. ; Beal, Lisa M. ; Cunningham, S. A. ; Kanzow, Torsten ; Bryden, Harry L. ; Hirschi, J. J. M. ; Marotzke, J. ; Meinen, Christopher S. ; Shaw, B. ; Curry, Ruth G.
    Continuous estimates of the oceanic meridional heat transport in the Atlantic are derived from the Rapid Climate Change–Meridional Overturning Circulation (MOC) and Heatflux Array (RAPID–MOCHA) observing system deployed along 26.5°N, for the period from April 2004 to October 2007. The basinwide meridional heat transport (MHT) is derived by combining temperature transports (relative to a common reference) from 1) the Gulf Stream in the Straits of Florida; 2) the western boundary region offshore of Abaco, Bahamas; 3) the Ekman layer [derived from Quick Scatterometer (QuikSCAT) wind stresses]; and 4) the interior ocean monitored by “endpoint” dynamic height moorings. The interior eddy heat transport arising from spatial covariance of the velocity and temperature fields is estimated independently from repeat hydrographic and expendable bathythermograph (XBT) sections and can also be approximated by the array. The results for the 3.5 yr of data thus far available show a mean MHT of 1.33 ± 0.40 PW for 10-day-averaged estimates, on which time scale a basinwide mass balance can be reasonably assumed. The associated MOC strength and variability is 18.5 ± 4.9 Sv (1 Sv ≡ 106 m3 s−1). The continuous heat transport estimates range from a minimum of 0.2 to a maximum of 2.5 PW, with approximately half of the variance caused by Ekman transport changes and half caused by changes in the geostrophic circulation. The data suggest a seasonal cycle of the MHT with a maximum in summer (July–September) and minimum in late winter (March–April), with an annual range of 0.6 PW. A breakdown of the MHT into “overturning” and “gyre” components shows that the overturning component carries 88% of the total heat transport. The overall uncertainty of the annual mean MHT for the 3.5-yr record is 0.14 PW or about 10% of the mean value.
  • Article
    CMIP5 model intercomparison of freshwater budget and circulation in the North Atlantic
    (American Meteorological Society, 2014-05-01) Deshayes, Julie ; Curry, Ruth G. ; Msadek, Rym
    The subpolar North Atlantic is a center of variability of ocean properties, wind stress curl, and air–sea exchanges. Observations and hindcast simulations suggest that from the early 1970s to the mid-1990s the subpolar gyre became fresher while the gyre and meridional circulations intensified. This is opposite to the relationship of freshening causing a weakened circulation, most often reproduced by climate models. The authors hypothesize that both these configurations exist but dominate on different time scales: a fresher subpolar gyre when the circulation is more intense, at interannual frequencies (configuration A), and a saltier subpolar gyre when the circulation is more intense, at longer periods (configuration B). Rather than going into the detail of the mechanisms sustaining each configuration, the authors’ objective is to identify which configuration dominates and to test whether this depends on frequency, in preindustrial control runs of five climate models from phase 5 of the Coupled Model Intercomparison Project (CMIP5). To this end, the authors have developed a novel intercomparison method that enables analysis of freshwater budget and circulation changes in a physical perspective that overcomes model specificities. Lag correlations and a cross-spectral analysis between freshwater content changes and circulation indices validate the authors’ hypothesis, as configuration A is only visible at interannual frequencies while configuration B is mostly visible at decadal and longer periods, suggesting that the driving role of salinity on the circulation depends on frequency. Overall, this analysis underscores the large differences among state-of-the-art climate models in their representations of the North Atlantic freshwater budget.
  • Article
    Linkages among dissolved organic matter export, dissolved metabolites, and associated microbial community structure response in the northwestern Sargasso Sea on a seasonal scale
    (Frontiers Media, 2022-03-08) Liu, Shuting ; Longnecker, Krista ; Kujawinski, Elizabeth B. ; Vergin, Kevin ; Bolaños, Luis M. ; Giovannoni, Stephen J. ; Parsons, Rachel J. ; Opalk, Keri ; Halewood, Elisa ; Hansell, Dennis A. ; Johnson, Rodney J. ; Curry, Ruth G. ; Carlson, Craig A.
    Deep convective mixing of dissolved and suspended organic matter from the surface to depth can represent an important export pathway of the biological carbon pump. The seasonally oligotrophic Sargasso Sea experiences annual winter convective mixing to as deep as 300 m, providing a unique model system to examine dissolved organic matter (DOM) export and its subsequent compositional transformation by microbial oxidation. We analyzed biogeochemical and microbial parameters collected from the northwestern Sargasso Sea, including bulk dissolved organic carbon (DOC), total dissolved amino acids (TDAA), dissolved metabolites, bacterial abundance and production, and bacterial community structure, to assess the fate and compositional transformation of DOM by microbes on a seasonal time-scale in 2016–2017. DOM dynamics at the Bermuda Atlantic Time-series Study site followed a general annual trend of DOC accumulation in the surface during stratified periods followed by downward flux during winter convective mixing. Changes in the amino acid concentrations and compositions provide useful indices of diagenetic alteration of DOM. TDAA concentrations and degradation indices increased in the mesopelagic zone during mixing, indicating the export of a relatively less diagenetically altered (i.e., more labile) DOM. During periods of deep mixing, a unique subset of dissolved metabolites, such as amino acids, vitamins, and benzoic acids, was produced or lost. DOM export and compositional change were accompanied by mesopelagic bacterial growth and response of specific bacterial lineages in the SAR11, SAR202, and SAR86 clades, Acidimicrobiales, and Flavobacteria, during and shortly following deep mixing. Complementary DOM biogeochemistry and microbial measurements revealed seasonal changes in DOM composition and diagenetic state, highlighting microbial alteration of the quantity and quality of DOM in the ocean.
  • Preprint
    The role of salinity in the decadal variability of the North Atlantic meridional overturning circulation
    ( 2008-12) Frankignoul, Claude ; Deshayes, Julie ; Curry, Ruth G.
    An OGCM hindcast is used to investigate the linkages between North Atlantic Ocean salinity and circulation changes during 1963–2003. The focus is on the eastern subpolar region consisting of the Irminger Sea and the eastern North Atlantic where a careful assessment shows that the simulated interannual to decadal salinity changes in the upper 1500 m reproduce well those derived from the available record of hydrographic measurements. In the model, the variability of the Atlantic meridional overturning circulation (MOC) is primarily driven by changes in deep water formation taking place in the Irminger Sea and, to a lesser extent, the Labrador Sea. Both are strongly influenced by the North Atlantic Oscillation (NAO). The modeled interannual to decadal salinity changes in the subpolar basins are mostly controlled by circulation-driven anomalies of freshwater flux convergence, although surface salinity restoring to climatology and other boundary fluxes each account for approximately 25% of the variance. The NAO plays an important role: a positive NAO phase is associated with increased precipitation, reduced northward salt transport by the wind-driven intergyre gyre, and increased southward flows of freshwater across the Greenland-Scotland ridge. Since the NAO largely controlled deep convection in the subpolar gyre, fresher waters are found near the sinking region during convective events. This markedly differs from the active influence on the MOC that salinity exerts at decadal and longer timescales in most coupled models. The intensification of the MOC that follows a positive NAO phase by about 2 years does not lead to an increase in the northward salt transport into the subpolar domain at low frequencies because it is cancelled by the concomitant intensification of the subpolar gyre which shifts the subpolar front eastward and reduces the northward salt transport by the North Atlantic Current waters. This differs again from most coupled models, where the gyre intensification precedes that of the MOC by several years.
  • Article
    OceanGliders: A component of the integrated GOOS
    (Frontiers Media, 2019-10-02) Testor, Pierre ; de Young, Brad ; Rudnick, Daniel L. ; Glenn, Scott ; Hayes, Daniel J. ; Lee, Craig M. ; Pattiaratchi, Charitha ; Hill, Katherine Louise ; Heslop, Emma ; Turpin, Victor ; Alenius, Pekka ; Barrera, Carlos ; Barth, John A. ; Beaird, Nicholas ; Bécu, Guislain ; Bosse, Anthony ; Bourrin, François ; Brearley, J. Alexander ; Chao, Yi ; Chen, Sue ; Chiggiato, Jacopo ; Coppola, Laurent ; Crout, Richard ; Cummings, James A. ; Curry, Beth ; Curry, Ruth G. ; Davis, Richard F. ; Desai, Kruti ; DiMarco, Steven F. ; Edwards, Catherine ; Fielding, Sophie ; Fer, Ilker ; Frajka-Williams, Eleanor ; Gildor, Hezi ; Goni, Gustavo J. ; Gutierrez, Dimitri ; Haugan, Peter M. ; Hebert, David ; Heiderich, Joleen ; Henson, Stephanie A. ; Heywood, Karen J. ; Hogan, Patrick ; Houpert, Loïc ; Huh, Sik ; Inall, Mark E. ; Ishii, Masao ; Ito, Shin-ichi ; Itoh, Sachihiko ; Jan, Sen ; Kaiser, Jan ; Karstensen, Johannes ; Kirkpatrick, Barbara ; Klymak, Jody M. ; Kohut, Josh ; Krahmann, Gerd ; Krug, Marjolaine ; McClatchie, Sam ; Marin, Frédéric ; Mauri, Elena ; Mehra, Avichal ; Meredith, Michael P. ; Meunier, Thomas ; Miles, Travis ; Morell, Julio M. ; Mortier, Laurent ; Nicholson, Sarah ; O'Callaghan, Joanne ; O'Conchubhair, Diarmuid ; Oke, Peter ; Pallás-Sanz, Enric ; Palmer, Matthew D. ; Park, Jong Jin ; Perivoliotis, Leonidas ; Poulain, Pierre Marie ; Perry, Ruth ; Queste, Bastien ; Rainville, Luc ; Rehm, Eric ; Roughan, Moninya ; Rome, Nicholas ; Ross, Tetjana ; Ruiz, Simon ; Saba, Grace ; Schaeffer, Amandine ; Schönau, Martha ; Schroeder, Katrin ; Shimizu, Yugo ; Sloyan, Bernadette M. ; Smeed, David A. ; Snowden, Derrick ; Song, Yumi ; Swart, Sebastiaan ; Tenreiro, Miguel ; Thompson, Andrew ; Tintore, Joaquin ; Todd, Robert E. ; Toro, Cesar ; Venables, Hugh J. ; Wagawa, Taku ; Waterman, Stephanie N. ; Watlington, Roy A. ; Wilson, Doug
    The OceanGliders program started in 2016 to support active coordination and enhancement of global glider activity. OceanGliders contributes to the international efforts of the Global Ocean Observation System (GOOS) for Climate, Ocean Health, and Operational Services. It brings together marine scientists and engineers operating gliders around the world: (1) to observe the long-term physical, biogeochemical, and biological ocean processes and phenomena that are relevant for societal applications; and, (2) to contribute to the GOOS through real-time and delayed mode data dissemination. The OceanGliders program is distributed across national and regional observing systems and significantly contributes to integrated, multi-scale and multi-platform sampling strategies. OceanGliders shares best practices, requirements, and scientific knowledge needed for glider operations, data collection and analysis. It also monitors global glider activity and supports the dissemination of glider data through regional and global databases, in real-time and delayed modes, facilitating data access to the wider community. OceanGliders currently supports national, regional and global initiatives to maintain and expand the capabilities and application of gliders to meet key global challenges such as improved measurement of ocean boundary currents, water transformation and storm forecast.
  • Article
    Seasonal and daily patterns in known dissolved metabolites in the northwestern Sargasso Sea
    (Association for the Sciences of Limnology and Oceanography, 2024-01-10) Longnecker, Krista ; Kido Soule, Melissa C. ; Swarr, Gretchen J. ; Parsons, Rachel J. ; Liu, Shuting ; Johnson, Winifred M. ; Widner, Brittany ; Curry, Ruth G. ; Carlson, Craig A. ; Kujawinski, Elizabeth B.
    Organic carbon in seawater plays a significant role in the global carbon cycle. The concentration and composition of dissolved organic carbon reflect the activity of the biological community and chemical reactions that occur in seawater. From 2016 to 2019, we repeatedly sampled the oligotrophic northwest Sargasso Sea in the vicinity of the Bermuda Atlantic Time-series Study site (BATS) to quantitatively follow known compounds within the pool of dissolved organic matter in the upper 1000 m of the water column. Most metabolites showed surface enrichment, and 83% of the metabolites had significantly lower concentrations with increasing depth. Dissolved metabolite concentrations most notably revealed temporal variability. Fourteen metabolites displayed seasonality that was repeated in each of the 4 yr sampled. Concentrations of vitamins, including pantothenic acid (vitamin B5) and riboflavin (vitamin B2), increased annually during winter periods when mixed layer depths were deepest. During diel sampling, light-sensitive riboflavin decreased significantly during daylight hours. The temporal variability in metabolites at BATS was less than the spatial variability in metabolites from a previous sample set collected over a broad latitudinal range in the western Atlantic Ocean. The metabolites examined in this study are all components of central carbon metabolism. By examining these metabolites at finer resolution and in a time-series, we begin to provide insights into the chemical compounds that may be exchanged by microorganisms in marine systems, data which are fundamental to understanding the chemical response of marine systems to future changes in climate.