Phelan Beth

No Thumbnail Available
Last Name
Phelan
First Name
Beth
ORCID

Search Results

Now showing 1 - 2 of 2
  • Article
    Ontogenetic variation in the hearing sensitivity of black sea bass (Centropristis striata) and the implications of anthropogenic sound on behavior and communication
    (Company of Biologists, 2020-05-27) Stanley, Jenni A. ; Caiger, Paul E. ; Phelan, Beth ; Shelledy, Katharine ; Mooney, T. Aran ; Van Parijs, Sofie M.
    Black sea bass (Centropristis striata) is an important fish species in both commercial and recreational fisheries of southern New England and the mid-Atlantic Bight. Due to the intense urbanization of these waters, this species is subject to a wide range of anthropogenic noise pollution. Concerns that C. striata are negatively affected by pile driving and construction noise predominate in areas earmarked for energy development. However, as yet, the hearing range of C. striata is unknown, making it hard to evaluate potential risks. This study is a first step in understanding the effects of anthropogenic noise on C. striata by determining the auditory bandwidth and thresholds of this species using auditory evoked potentials (AEPs), creating pressure and acceleration audiograms. These physiological tests were conducted on wild-caught C. striata in three size/age categories. Results showed that juvenile C. striata significantly had the lowest thresholds, with hearing sensitivity decreasing in the larger size classes. Furthermore, Centropristis striata has fairly sensitive hearing relative to other related species. Preliminary investigations into the mechanisms of their hearing ability were undertaken with gross dissections and an opportunistic micro computed tomography image to address the auditory structures including otoliths and swimbladder morphology. Crucially, the hearing range of C. striata, and their most sensitive frequencies, directly overlap with high-amplitude anthropogenic noise pollution such as shipping and underwater construction.
  • Article
    And on top of all that… coping with ocean acidification in the midst of many stressors
    (The Oceanography Society, 2015-06) Breitburg, Denise L. ; Salisbury, Joseph E. ; Bernhard, Joan M. ; Cai, Wei-Jun ; Dupont, Sam ; Doney, Scott C. ; Kroeker, Kristy J. ; Levin, Lisa A. ; Long, W. Christopher ; Milke, Lisa M. ; Miller, Seth H. ; Phelan, Beth ; Passow, Uta ; Seibel, Brad A. ; Todgham, Anne E. ; Tarrant, Ann M.
    Oceanic and coastal waters are acidifying due to processes dominated in the open ocean by increasing atmospheric CO2 and dominated in estuaries and some coastal waters by nutrient-fueled respiration. The patterns and severity of acidification, as well as its effects, are modified by the host of stressors related to human activities that also influence these habitats. Temperature, deoxygenation, and changes in food webs are particularly important co-stressors because they are pervasive, and both their causes and effects are often mechanistically linked to acidification. Development of a theoretical underpinning to multiple stressor research that considers physiological, ecological, and evolutionary perspectives is needed because testing all combinations of stressors and stressor intensities experimentally is impossible. Nevertheless, use of a wide variety of research approaches is a logical and promising strategy for improving understanding of acidification and its effects. Future research that focuses on spatial and temporal patterns of stressor interactions and on identifying mechanisms by which multiple stressors affect individuals, populations, and ecosystems is critical. It is also necessary to incorporate consideration of multiple stressors into management, mitigation, and adaptation to acidification and to increase public and policy recognition of the importance of addressing acidification in the context of the suite of other stressors with which it potentially interacts.