Hopkins
Julia
Hopkins
Julia
No Thumbnail Available
Search Results
Now showing
1 - 4 of 4
-
PreprintFlow separation effects on shoreline sediment transport( 2017-01) Hopkins, Julia ; Elgar, Steve ; Raubenheimer, BrittField-tested numerical model simulations are used to estimate the effects of an inlet, ebb shoal, wave height, wave direction, and shoreline geometry on the variability of bathymetric change on a curved coast with a migrating inlet and strong nearshore currents. The model uses bathymetry measured along the southern shoreline of Martha’s Vineyard, MA, and was validated with waves and currents observed from the shoreline to ~10-m water depth. Between 2007 and 2014, the inlet was open and the shoreline along the southeast corner of the island eroded ~200 m and became sharper. Between 2014 and 2015, the corner accreted and became smoother as the inlet closed. Numerical simulations indicate that variability of sediment transport near the corner shoreline depends more strongly on its radius of curvature (a proxy for the separation of tidal flows from the coast) than on the presence of the inlet, the ebb shoal, or wave height and direction. As the radius of curvature decreases (as the corner sharpens), tidal asymmetry of nearshore currents is enhanced, leading to more sediment transport near the shoreline over several tidal cycles. The results suggest that feedbacks between shoreline geometry and inner-shelf flows can be important to coastal erosion and accretion in the vicinity of an inlet.
-
ArticleStorm impact on morphological evolution of a sandy inlet(John Wiley & Sons, 2018-08-18) Hopkins, Julia ; Elgar, Steve ; Raubenheimer, BrittObservations of waves, currents, and bathymetric change in shallow water (<10‐m depth) both inside and offshore of a migrating inlet with strong (2–3 m/s) tidal currents and complex nearshore bathymetry show over 2.5 m of erosion and accretion resulting from each of two hurricanes (offshore wave heights >8 m). A numerical model (Delft3D, 2DH mode) simulating waves, currents, and morphological change reproduces the observations with the inclusion of hurricane force winds and sediment transport parameters adjusted based on model‐data comparisons. For simulations of short hurricanes and longer nor'easters with identical offshore total time‐integrated wave energy, but different peak wave energies and storm durations, morphological change is correlated (R2 = 0.60) with storm intensity (total energy of the storm divided by the duration of the storm). Similarly, the erosion observed at the Sand Engine in the Netherlands is correlated with storm intensity. The observations and simulations suggest that the temporal distribution of energy in a storm event, as well as the total energy, impacts subsequent nearshore morphological change. Increased storm intensity enhances sediment transport in bathymetrically complex, mixed wave‐and‐tidal‐current energy environments, as well as at other wave‐dominated sandy beaches.
-
ThesisField observations and numerical model simulations of a migrating inlet system(Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 2017-09) Hopkins, JuliaWaves, currents, and bathymetric change observed along 11 km of the southern shoreline of Martha’s Vineyard include storm events, strong tidal flows (> 2 m/s), and an inlet migrating 2.5 km in ~7 years. A field-verified Delft3D numerical model developed for this system is used to examine the hydrodynamics in the nearshore and their effect on the migrating inlet. An initial numerical experiment showed that the observed 70⁰ tidal modulation of wave direction in the nearshore was owing to interactions with tidal currents, and not to depth-induced refraction as waves propagated over complex shallow bathymetry. A second set of simulations focused on the separation of tidal currents from the southeast corner of Martha’s Vineyard, showing the positive correlation between flow separation and sediment transport around a curved shoreline. Observations of waves, currents, and bathymetric change during hurricanes were reproduced in a third numerical experiment examining the competition between storm waves, which enhance inlet migration, and strong tidal currents, which scour the inlet and reduce migration rates. The combined field observations and simulations examined here demonstrate the importance of wave and tidal current forcings on morphological evolution at timescales of days to months.
-
ArticleObservations and model simulations of wave-current interaction on the inner shelf(John Wiley & Sons, 2016-01-10) Hopkins, Julia ; Elgar, Steve ; Raubenheimer, BrittWave directions and mean currents observed for two 1 month long periods in 7 and 2 m water depths along 11 km of the southern shoreline of Martha's Vineyard, MA, have strong tidal modulations. Wave directions are modulated by as much as 70° over a tidal cycle. The magnitude of the tidal modulations in the wavefield decreases alongshore to the west, consistent with the observed decrease in tidal currents from 2.1 to 0.2 m/s along the shoreline. A numerical model (SWAN and Deflt3D-FLOW) simulating waves and currents reproduces the observations accurately. Model simulations with and without wave-current interaction and tidal depth changes demonstrate that the observed tidal modulations of the wavefield primarily are caused by wave-current interaction and not by tidal changes to water depths over the nearby complex shoals.